Spaces:
Runtime error
Runtime error
import os.path as osp | |
import os | |
import sys | |
import itertools | |
sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) | |
import cv2 | |
import numpy as np | |
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset | |
from dust3r.utils.image import imread_cv2 | |
class MP3D_Multi(BaseMultiViewDataset): | |
def __init__(self, *args, split, ROOT, **kwargs): | |
self.ROOT = ROOT | |
self.video = False | |
self.is_metric = True | |
super().__init__(*args, **kwargs) | |
self.loaded_data = self._load_data() | |
def _load_data(self): | |
scenes = os.listdir(self.ROOT) | |
offset = 0 | |
overlaps = {scene: [] for scene in scenes} | |
scene_img_list = {scene: [] for scene in scenes} | |
images = [] | |
j = 0 | |
for scene in scenes: | |
scene_dir = osp.join(self.ROOT, scene) | |
rgb_dir = osp.join(scene_dir, "rgb") | |
basenames = sorted( | |
[f[:-4] for f in os.listdir(rgb_dir) if f.endswith(".png")] | |
) | |
overlap = np.load(osp.join(scene_dir, "overlap.npy")) | |
overlaps[scene] = overlap | |
num_imgs = len(basenames) | |
images.extend( | |
[(scene, i, basename) for i, basename in enumerate(basenames)] | |
) | |
scene_img_list[scene] = np.arange(num_imgs) + offset | |
offset += num_imgs | |
j += 1 | |
self.scenes = scenes | |
self.scene_img_list = scene_img_list | |
self.images = images | |
self.overlaps = overlaps | |
def __len__(self): | |
return len(self.images) | |
def get_image_num(self): | |
return len(self.images) | |
def _get_views(self, idx, resolution, rng, num_views): | |
num_views_posible = 0 | |
num_unique = num_views if not self.allow_repeat else max(num_views // 3, 3) | |
while num_views_posible < num_unique - 1: | |
scene, img_idx, _ = self.images[idx] | |
overlap = self.overlaps[scene] | |
sel_img_idx = np.where(overlap[:, 0] == img_idx)[0] | |
overlap_sel = overlap[sel_img_idx] | |
overlap_sel = overlap_sel[ | |
(overlap_sel[:, 2] > 0.01) * (overlap_sel[:, 2] < 1) | |
] | |
num_views_posible = len(overlap_sel) | |
if num_views_posible >= num_unique - 1: | |
break | |
idx = rng.choice(len(self.images)) | |
ref_id = self.scene_img_list[scene][img_idx] | |
ids = self.scene_img_list[scene][overlap_sel[:, 1].astype(np.int64)] | |
replace = False if not self.allow_repeat else True | |
image_idxs = rng.choice( | |
ids, | |
num_views - 1, | |
replace=replace, | |
p=overlap_sel[:, 2] / np.sum(overlap_sel[:, 2]), | |
) | |
image_idxs = np.concatenate([[ref_id], image_idxs]) | |
ordered_video = False | |
views = [] | |
for v, view_idx in enumerate(image_idxs): | |
scene, _, basename = self.images[view_idx] | |
scene_dir = osp.join(self.ROOT, scene) | |
rgb_path = osp.join(scene_dir, "rgb", basename + ".png") | |
depth_path = osp.join(scene_dir, "depth", basename + ".npy") | |
cam_path = osp.join(scene_dir, "cam", basename + ".npz") | |
rgb_image = imread_cv2(rgb_path, cv2.IMREAD_COLOR) | |
depthmap = np.load(depth_path).astype(np.float32) | |
depthmap[~np.isfinite(depthmap)] = 0 # invalid | |
cam_file = np.load(cam_path) | |
intrinsics = cam_file["intrinsics"] | |
camera_pose = cam_file["pose"] | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx | |
) | |
# generate img mask and raymap mask | |
img_mask, ray_mask = self.get_img_and_ray_masks( | |
self.is_metric, v, rng, p=[0.85, 0.1, 0.05] | |
) | |
views.append( | |
dict( | |
img=rgb_image, | |
depthmap=depthmap.astype(np.float32), | |
camera_pose=camera_pose.astype(np.float32), | |
camera_intrinsics=intrinsics.astype(np.float32), | |
dataset="mp3d", | |
label=scene + "_" + rgb_path, | |
instance=f"{str(idx)}_{str(view_idx)}", | |
is_metric=self.is_metric, | |
is_video=ordered_video, | |
quantile=np.array(0.99, dtype=np.float32), | |
img_mask=img_mask, | |
ray_mask=ray_mask, | |
camera_only=False, | |
depth_only=False, | |
single_view=False, | |
reset=False, | |
) | |
) | |
assert len(views) == num_views | |
return views | |