Spaces:
Runtime error
Runtime error
import os.path as osp | |
import os | |
import sys | |
import itertools | |
sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) | |
import cv2 | |
import numpy as np | |
import h5py | |
import math | |
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset | |
from dust3r.utils.image import imread_cv2 | |
class ARKitScenesHighRes_Multi(BaseMultiViewDataset): | |
def __init__(self, *args, split, ROOT, **kwargs): | |
self.ROOT = ROOT | |
self.video = True | |
self.max_interval = 8 | |
self.is_metric = True | |
super().__init__(*args, **kwargs) | |
if split == "train": | |
self.split = "Training" | |
elif split == "test": | |
self.split = "Validation" | |
else: | |
raise ValueError("") | |
self.loaded_data = self._load_data(self.split) | |
def _load_data(self, split): | |
all_scenes = sorted( | |
[ | |
d | |
for d in os.listdir(osp.join(self.ROOT, split)) | |
if osp.isdir(osp.join(self.ROOT, split, d)) | |
] | |
) | |
offset = 0 | |
scenes = [] | |
sceneids = [] | |
images = [] | |
start_img_ids = [] | |
scene_img_list = [] | |
timestamps = [] | |
intrinsics = [] | |
trajectories = [] | |
scene_id = 0 | |
for scene in all_scenes: | |
scene_dir = osp.join(self.ROOT, self.split, scene) | |
with np.load(osp.join(scene_dir, "scene_metadata.npz")) as data: | |
imgs_with_indices = sorted( | |
enumerate(data["images"]), key=lambda x: x[1] | |
) | |
imgs = [x[1] for x in imgs_with_indices] | |
cut_off = ( | |
self.num_views | |
if not self.allow_repeat | |
else max(self.num_views // 3, 3) | |
) | |
if len(imgs) < cut_off: | |
print(f"Skipping {scene}") | |
continue | |
indices = [x[0] for x in imgs_with_indices] | |
tsps = np.array( | |
[float(img_name.split("_")[1][:-4]) for img_name in imgs] | |
) | |
assert [img[:8] == scene for img in imgs], f"{scene}, {imgs}" | |
num_imgs = data["images"].shape[0] | |
img_ids = list(np.arange(num_imgs) + offset) | |
start_img_ids_ = img_ids[: num_imgs - cut_off + 1] | |
scenes.append(scene) | |
scene_img_list.append(img_ids) | |
sceneids.extend([scene_id] * num_imgs) | |
images.extend(imgs) | |
start_img_ids.extend(start_img_ids_) | |
timestamps.extend(tsps) | |
K = np.expand_dims(np.eye(3), 0).repeat(num_imgs, 0) | |
intrins = data["intrinsics"][indices] | |
K[:, 0, 0] = [fx for _, _, fx, _, _, _ in intrins] | |
K[:, 1, 1] = [fy for _, _, _, fy, _, _ in intrins] | |
K[:, 0, 2] = [cx for _, _, _, _, cx, _ in intrins] | |
K[:, 1, 2] = [cy for _, _, _, _, _, cy in intrins] | |
intrinsics.extend(list(K)) | |
trajectories.extend(list(data["trajectories"][indices])) | |
# offset groups | |
offset += num_imgs | |
scene_id += 1 | |
self.scenes = scenes | |
self.sceneids = sceneids | |
self.images = images | |
self.scene_img_list = scene_img_list | |
self.intrinsics = intrinsics | |
self.trajectories = trajectories | |
self.start_img_ids = start_img_ids | |
assert len(self.images) == len(self.intrinsics) == len(self.trajectories) | |
def __len__(self): | |
return len(self.start_img_ids) | |
def get_image_num(self): | |
return len(self.images) | |
def _get_views(self, idx, resolution, rng, num_views): | |
start_id = self.start_img_ids[idx] | |
all_image_ids = self.scene_img_list[self.sceneids[start_id]] | |
pos, ordered_video = self.get_seq_from_start_id( | |
num_views, | |
start_id, | |
all_image_ids, | |
rng, | |
max_interval=self.max_interval, | |
block_shuffle=16, | |
) | |
image_idxs = np.array(all_image_ids)[pos] | |
views = [] | |
for v, view_idx in enumerate(image_idxs): | |
scene_id = self.sceneids[view_idx] | |
scene_dir = osp.join(self.ROOT, self.split, self.scenes[scene_id]) | |
intrinsics = self.intrinsics[view_idx] | |
camera_pose = self.trajectories[view_idx] | |
basename = self.images[view_idx] | |
assert ( | |
basename[:8] == self.scenes[scene_id] | |
), f"{basename}, {self.scenes[scene_id]}" | |
# print(scene_dir, basename) | |
# Load RGB image | |
rgb_image = imread_cv2( | |
osp.join(scene_dir, "vga_wide", basename.replace(".png", ".jpg")) | |
) | |
# Load depthmap | |
depthmap = imread_cv2( | |
osp.join(scene_dir, "highres_depth", basename), cv2.IMREAD_UNCHANGED | |
) | |
depthmap = depthmap.astype(np.float32) / 1000.0 | |
depthmap[~np.isfinite(depthmap)] = 0 # invalid | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx | |
) | |
# generate img mask and raymap mask | |
img_mask, ray_mask = self.get_img_and_ray_masks( | |
self.is_metric, v, rng, p=[0.7, 0.25, 0.05] | |
) | |
views.append( | |
dict( | |
img=rgb_image, | |
depthmap=depthmap.astype(np.float32), | |
camera_pose=camera_pose.astype(np.float32), | |
camera_intrinsics=intrinsics.astype(np.float32), | |
dataset="arkitscenes_highres", | |
label=self.scenes[scene_id] + "_" + basename, | |
instance=f"{str(idx)}_{str(view_idx)}", | |
is_metric=self.is_metric, | |
is_video=ordered_video, | |
quantile=np.array(0.99, dtype=np.float32), | |
img_mask=img_mask, | |
ray_mask=ray_mask, | |
camera_only=False, | |
depth_only=False, | |
single_view=False, | |
reset=False, | |
) | |
) | |
assert len(views) == num_views | |
return views | |