vmem / extern /CUT3R /src /dust3r /datasets /arkitscenes_highres.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import os.path as osp
import os
import sys
import itertools
sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
import cv2
import numpy as np
import h5py
import math
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2
class ARKitScenesHighRes_Multi(BaseMultiViewDataset):
def __init__(self, *args, split, ROOT, **kwargs):
self.ROOT = ROOT
self.video = True
self.max_interval = 8
self.is_metric = True
super().__init__(*args, **kwargs)
if split == "train":
self.split = "Training"
elif split == "test":
self.split = "Validation"
else:
raise ValueError("")
self.loaded_data = self._load_data(self.split)
def _load_data(self, split):
all_scenes = sorted(
[
d
for d in os.listdir(osp.join(self.ROOT, split))
if osp.isdir(osp.join(self.ROOT, split, d))
]
)
offset = 0
scenes = []
sceneids = []
images = []
start_img_ids = []
scene_img_list = []
timestamps = []
intrinsics = []
trajectories = []
scene_id = 0
for scene in all_scenes:
scene_dir = osp.join(self.ROOT, self.split, scene)
with np.load(osp.join(scene_dir, "scene_metadata.npz")) as data:
imgs_with_indices = sorted(
enumerate(data["images"]), key=lambda x: x[1]
)
imgs = [x[1] for x in imgs_with_indices]
cut_off = (
self.num_views
if not self.allow_repeat
else max(self.num_views // 3, 3)
)
if len(imgs) < cut_off:
print(f"Skipping {scene}")
continue
indices = [x[0] for x in imgs_with_indices]
tsps = np.array(
[float(img_name.split("_")[1][:-4]) for img_name in imgs]
)
assert [img[:8] == scene for img in imgs], f"{scene}, {imgs}"
num_imgs = data["images"].shape[0]
img_ids = list(np.arange(num_imgs) + offset)
start_img_ids_ = img_ids[: num_imgs - cut_off + 1]
scenes.append(scene)
scene_img_list.append(img_ids)
sceneids.extend([scene_id] * num_imgs)
images.extend(imgs)
start_img_ids.extend(start_img_ids_)
timestamps.extend(tsps)
K = np.expand_dims(np.eye(3), 0).repeat(num_imgs, 0)
intrins = data["intrinsics"][indices]
K[:, 0, 0] = [fx for _, _, fx, _, _, _ in intrins]
K[:, 1, 1] = [fy for _, _, _, fy, _, _ in intrins]
K[:, 0, 2] = [cx for _, _, _, _, cx, _ in intrins]
K[:, 1, 2] = [cy for _, _, _, _, _, cy in intrins]
intrinsics.extend(list(K))
trajectories.extend(list(data["trajectories"][indices]))
# offset groups
offset += num_imgs
scene_id += 1
self.scenes = scenes
self.sceneids = sceneids
self.images = images
self.scene_img_list = scene_img_list
self.intrinsics = intrinsics
self.trajectories = trajectories
self.start_img_ids = start_img_ids
assert len(self.images) == len(self.intrinsics) == len(self.trajectories)
def __len__(self):
return len(self.start_img_ids)
def get_image_num(self):
return len(self.images)
def _get_views(self, idx, resolution, rng, num_views):
start_id = self.start_img_ids[idx]
all_image_ids = self.scene_img_list[self.sceneids[start_id]]
pos, ordered_video = self.get_seq_from_start_id(
num_views,
start_id,
all_image_ids,
rng,
max_interval=self.max_interval,
block_shuffle=16,
)
image_idxs = np.array(all_image_ids)[pos]
views = []
for v, view_idx in enumerate(image_idxs):
scene_id = self.sceneids[view_idx]
scene_dir = osp.join(self.ROOT, self.split, self.scenes[scene_id])
intrinsics = self.intrinsics[view_idx]
camera_pose = self.trajectories[view_idx]
basename = self.images[view_idx]
assert (
basename[:8] == self.scenes[scene_id]
), f"{basename}, {self.scenes[scene_id]}"
# print(scene_dir, basename)
# Load RGB image
rgb_image = imread_cv2(
osp.join(scene_dir, "vga_wide", basename.replace(".png", ".jpg"))
)
# Load depthmap
depthmap = imread_cv2(
osp.join(scene_dir, "highres_depth", basename), cv2.IMREAD_UNCHANGED
)
depthmap = depthmap.astype(np.float32) / 1000.0
depthmap[~np.isfinite(depthmap)] = 0 # invalid
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx
)
# generate img mask and raymap mask
img_mask, ray_mask = self.get_img_and_ray_masks(
self.is_metric, v, rng, p=[0.7, 0.25, 0.05]
)
views.append(
dict(
img=rgb_image,
depthmap=depthmap.astype(np.float32),
camera_pose=camera_pose.astype(np.float32),
camera_intrinsics=intrinsics.astype(np.float32),
dataset="arkitscenes_highres",
label=self.scenes[scene_id] + "_" + basename,
instance=f"{str(idx)}_{str(view_idx)}",
is_metric=self.is_metric,
is_video=ordered_video,
quantile=np.array(0.99, dtype=np.float32),
img_mask=img_mask,
ray_mask=ray_mask,
camera_only=False,
depth_only=False,
single_view=False,
reset=False,
)
)
assert len(views) == num_views
return views