Spaces:
Runtime error
Runtime error
from .utils.transforms import * | |
from .base.batched_sampler import BatchedRandomSampler # noqa | |
from .arkitscenes import ARKitScenes_Multi # noqa | |
from .arkitscenes_highres import ARKitScenesHighRes_Multi | |
from .bedlam import BEDLAM_Multi | |
from .blendedmvs import BlendedMVS_Multi # noqa | |
from .co3d import Co3d_Multi # noqa | |
from .cop3d import Cop3D_Multi | |
from .dl3dv import DL3DV_Multi | |
from .dynamic_replica import DynamicReplica | |
from .eden import EDEN_Multi | |
from .hypersim import HyperSim_Multi | |
from .hoi4d import HOI4D_Multi | |
from .irs import IRS | |
from .mapfree import MapFree_Multi | |
from .megadepth import MegaDepth_Multi # noqa | |
from .mp3d import MP3D_Multi | |
from .mvimgnet import MVImgNet_Multi | |
from .mvs_synth import MVS_Synth_Multi | |
from .omniobject3d import OmniObject3D_Multi | |
from .pointodyssey import PointOdyssey_Multi | |
from .realestate10k import RE10K_Multi | |
from .scannet import ScanNet_Multi | |
from .scannetpp import ScanNetpp_Multi # noqa | |
from .smartportraits import SmartPortraits_Multi | |
from .spring import Spring | |
from .synscapes import SynScapes | |
from .tartanair import TartanAir_Multi | |
from .threedkb import ThreeDKenBurns | |
from .uasol import UASOL_Multi | |
from .urbansyn import UrbanSyn | |
from .unreal4k import UnReal4K_Multi | |
from .vkitti2 import VirtualKITTI2_Multi # noqa | |
from .waymo import Waymo_Multi # noqa | |
from .wildrgbd import WildRGBD_Multi # noqa | |
from accelerate import Accelerator | |
def get_data_loader( | |
dataset, | |
batch_size, | |
num_workers=8, | |
shuffle=True, | |
drop_last=True, | |
pin_mem=True, | |
accelerator: Accelerator = None, | |
fixed_length=False, | |
): | |
import torch | |
# pytorch dataset | |
if isinstance(dataset, str): | |
dataset = eval(dataset) | |
try: | |
sampler = dataset.make_sampler( | |
batch_size, | |
shuffle=shuffle, | |
drop_last=drop_last, | |
world_size=accelerator.num_processes, | |
fixed_length=fixed_length | |
) | |
shuffle = False | |
data_loader = torch.utils.data.DataLoader( | |
dataset, | |
batch_sampler=sampler, | |
num_workers=num_workers, | |
pin_memory=pin_mem, | |
) | |
except (AttributeError, NotImplementedError): | |
sampler = None | |
data_loader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=batch_size, | |
shuffle=shuffle, | |
num_workers=num_workers, | |
pin_memory=pin_mem, | |
drop_last=drop_last, | |
) | |
return data_loader | |