Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import json | |
import numpy as np | |
import os.path as osp | |
from collections import deque | |
import random | |
from eval.mv_recon.base import BaseStereoViewDataset | |
from dust3r.utils.image import imread_cv2 | |
import eval.mv_recon.dataset_utils.cropping as cropping | |
def shuffle_deque(dq, seed=None): | |
# Set the random seed for reproducibility | |
if seed is not None: | |
random.seed(seed) | |
# Convert deque to list, shuffle, and convert back | |
shuffled_list = list(dq) | |
random.shuffle(shuffled_list) | |
return deque(shuffled_list) | |
class SevenScenes(BaseStereoViewDataset): | |
def __init__( | |
self, | |
num_seq=1, | |
num_frames=5, | |
min_thresh=10, | |
max_thresh=100, | |
test_id=None, | |
full_video=False, | |
tuple_list=None, | |
seq_id=None, | |
rebuttal=False, | |
shuffle_seed=-1, | |
kf_every=1, | |
*args, | |
ROOT, | |
**kwargs, | |
): | |
self.ROOT = ROOT | |
super().__init__(*args, **kwargs) | |
self.num_seq = num_seq | |
self.num_frames = num_frames | |
self.max_thresh = max_thresh | |
self.min_thresh = min_thresh | |
self.test_id = test_id | |
self.full_video = full_video | |
self.kf_every = kf_every | |
self.seq_id = seq_id | |
self.rebuttal = rebuttal | |
self.shuffle_seed = shuffle_seed | |
# load all scenes | |
self.load_all_tuples(tuple_list) | |
self.load_all_scenes(ROOT) | |
def __len__(self): | |
if self.tuple_list is not None: | |
return len(self.tuple_list) | |
return len(self.scene_list) * self.num_seq | |
def load_all_tuples(self, tuple_list): | |
if tuple_list is not None: | |
self.tuple_list = tuple_list | |
# with open(tuple_path) as f: | |
# self.tuple_list = f.read().splitlines() | |
else: | |
self.tuple_list = None | |
def load_all_scenes(self, base_dir): | |
if self.tuple_list is not None: | |
# Use pre-defined simplerecon scene_ids | |
self.scene_list = [ | |
"stairs/seq-06", | |
"stairs/seq-02", | |
"pumpkin/seq-06", | |
"chess/seq-01", | |
"heads/seq-02", | |
"fire/seq-02", | |
"office/seq-03", | |
"pumpkin/seq-03", | |
"redkitchen/seq-07", | |
"chess/seq-02", | |
"office/seq-01", | |
"redkitchen/seq-01", | |
"fire/seq-01", | |
] | |
print(f"Found {len(self.scene_list)} sequences in split {self.split}") | |
return | |
scenes = os.listdir(base_dir) | |
file_split = {"train": "TrainSplit.txt", "test": "TestSplit.txt"}[self.split] | |
self.scene_list = [] | |
for scene in scenes: | |
if self.test_id is not None and scene != self.test_id: | |
continue | |
# read file split | |
with open(osp.join(base_dir, scene, file_split)) as f: | |
seq_ids = f.read().splitlines() | |
for seq_id in seq_ids: | |
# seq is string, take the int part and make it 01, 02, 03 | |
# seq_id = 'seq-{:2d}'.format(int(seq_id)) | |
num_part = "".join(filter(str.isdigit, seq_id)) | |
seq_id = f"seq-{num_part.zfill(2)}" | |
if self.seq_id is not None and seq_id != self.seq_id: | |
continue | |
self.scene_list.append(f"{scene}/{seq_id}") | |
print(f"Found {len(self.scene_list)} sequences in split {self.split}") | |
def _get_views(self, idx, resolution, rng): | |
if self.tuple_list is not None: | |
line = self.tuple_list[idx].split(" ") | |
scene_id = line[0] | |
img_idxs = line[1:] | |
else: | |
scene_id = self.scene_list[idx // self.num_seq] | |
seq_id = idx % self.num_seq | |
data_path = osp.join(self.ROOT, scene_id) | |
num_files = len([name for name in os.listdir(data_path) if "color" in name]) | |
img_idxs = [f"{i:06d}" for i in range(num_files)] | |
img_idxs = img_idxs[:: self.kf_every] | |
# Intrinsics used in SimpleRecon | |
fx, fy, cx, cy = 525, 525, 320, 240 | |
intrinsics_ = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32) | |
views = [] | |
imgs_idxs = deque(img_idxs) | |
if self.shuffle_seed >= 0: | |
imgs_idxs = shuffle_deque(imgs_idxs) | |
while len(imgs_idxs) > 0: | |
im_idx = imgs_idxs.popleft() | |
impath = osp.join(self.ROOT, scene_id, f"frame-{im_idx}.color.png") | |
depthpath = osp.join(self.ROOT, scene_id, f"frame-{im_idx}.depth.proj.png") | |
posepath = osp.join(self.ROOT, scene_id, f"frame-{im_idx}.pose.txt") | |
rgb_image = imread_cv2(impath) | |
depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) | |
rgb_image = cv2.resize(rgb_image, (depthmap.shape[1], depthmap.shape[0])) | |
depthmap[depthmap == 65535] = 0 | |
depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0 | |
depthmap[depthmap > 10] = 0 | |
depthmap[depthmap < 1e-3] = 0 | |
camera_pose = np.loadtxt(posepath).astype(np.float32) | |
if resolution != (224, 224) or self.rebuttal: | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics_, resolution, rng=rng, info=impath | |
) | |
else: | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics_, (512, 384), rng=rng, info=impath | |
) | |
W, H = rgb_image.size | |
cx = W // 2 | |
cy = H // 2 | |
l, t = cx - 112, cy - 112 | |
r, b = cx + 112, cy + 112 | |
crop_bbox = (l, t, r, b) | |
rgb_image, depthmap, intrinsics = cropping.crop_image_depthmap( | |
rgb_image, depthmap, intrinsics, crop_bbox | |
) | |
views.append( | |
dict( | |
img=rgb_image, | |
depthmap=depthmap, | |
camera_pose=camera_pose, | |
camera_intrinsics=intrinsics, | |
dataset="7scenes", | |
label=osp.join(scene_id, im_idx), | |
instance=impath, | |
) | |
) | |
return views | |
class DTU(BaseStereoViewDataset): | |
def __init__( | |
self, | |
num_seq=49, | |
num_frames=5, | |
min_thresh=10, | |
max_thresh=30, | |
test_id=None, | |
full_video=False, | |
sample_pairs=False, | |
kf_every=1, | |
*args, | |
ROOT, | |
**kwargs, | |
): | |
self.ROOT = ROOT | |
super().__init__(*args, **kwargs) | |
self.num_seq = num_seq | |
self.num_frames = num_frames | |
self.max_thresh = max_thresh | |
self.min_thresh = min_thresh | |
self.test_id = test_id | |
self.full_video = full_video | |
self.kf_every = kf_every | |
self.sample_pairs = sample_pairs | |
# load all scenes | |
self.load_all_scenes(ROOT) | |
def __len__(self): | |
return len(self.scene_list) * self.num_seq | |
def load_all_scenes(self, base_dir): | |
if self.test_id is None: | |
self.scene_list = os.listdir(osp.join(base_dir)) | |
print(f"Found {len(self.scene_list)} scenes in split {self.split}") | |
else: | |
if isinstance(self.test_id, list): | |
self.scene_list = self.test_id | |
else: | |
self.scene_list = [self.test_id] | |
print(f"Test_id: {self.test_id}") | |
def load_cam_mvsnet(self, file, interval_scale=1): | |
"""read camera txt file""" | |
cam = np.zeros((2, 4, 4)) | |
words = file.read().split() | |
# read extrinsic | |
for i in range(0, 4): | |
for j in range(0, 4): | |
extrinsic_index = 4 * i + j + 1 | |
cam[0][i][j] = words[extrinsic_index] | |
# read intrinsic | |
for i in range(0, 3): | |
for j in range(0, 3): | |
intrinsic_index = 3 * i + j + 18 | |
cam[1][i][j] = words[intrinsic_index] | |
if len(words) == 29: | |
cam[1][3][0] = words[27] | |
cam[1][3][1] = float(words[28]) * interval_scale | |
cam[1][3][2] = 192 | |
cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2] | |
elif len(words) == 30: | |
cam[1][3][0] = words[27] | |
cam[1][3][1] = float(words[28]) * interval_scale | |
cam[1][3][2] = words[29] | |
cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2] | |
elif len(words) == 31: | |
cam[1][3][0] = words[27] | |
cam[1][3][1] = float(words[28]) * interval_scale | |
cam[1][3][2] = words[29] | |
cam[1][3][3] = words[30] | |
else: | |
cam[1][3][0] = 0 | |
cam[1][3][1] = 0 | |
cam[1][3][2] = 0 | |
cam[1][3][3] = 0 | |
extrinsic = cam[0].astype(np.float32) | |
intrinsic = cam[1].astype(np.float32) | |
return intrinsic, extrinsic | |
def _get_views(self, idx, resolution, rng): | |
scene_id = self.scene_list[idx // self.num_seq] | |
seq_id = idx % self.num_seq | |
print("Scene ID:", scene_id) | |
image_path = osp.join(self.ROOT, scene_id, "images") | |
depth_path = osp.join(self.ROOT, scene_id, "depths") | |
mask_path = osp.join(self.ROOT, scene_id, "binary_masks") | |
cam_path = osp.join(self.ROOT, scene_id, "cams") | |
pairs_path = osp.join(self.ROOT, scene_id, "pair.txt") | |
if not self.full_video: | |
img_idxs = self.sample_pairs(pairs_path, seq_id) | |
else: | |
img_idxs = sorted(os.listdir(image_path)) | |
img_idxs = img_idxs[:: self.kf_every] | |
views = [] | |
imgs_idxs = deque(img_idxs) | |
while len(imgs_idxs) > 0: | |
im_idx = imgs_idxs.pop() | |
impath = osp.join(image_path, im_idx) | |
depthpath = osp.join(depth_path, im_idx.replace(".jpg", ".npy")) | |
campath = osp.join(cam_path, im_idx.replace(".jpg", "_cam.txt")) | |
maskpath = osp.join(mask_path, im_idx.replace(".jpg", ".png")) | |
rgb_image = imread_cv2(impath) | |
depthmap = np.load(depthpath) | |
depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) | |
mask = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED) / 255.0 | |
mask = mask.astype(np.float32) | |
mask[mask > 0.5] = 1.0 | |
mask[mask < 0.5] = 0.0 | |
mask = cv2.resize( | |
mask, | |
(depthmap.shape[1], depthmap.shape[0]), | |
interpolation=cv2.INTER_NEAREST, | |
) | |
kernel = np.ones((10, 10), np.uint8) # Define the erosion kernel | |
mask = cv2.erode(mask, kernel, iterations=1) | |
depthmap = depthmap * mask | |
cur_intrinsics, camera_pose = self.load_cam_mvsnet(open(campath, "r")) | |
intrinsics = cur_intrinsics[:3, :3] | |
camera_pose = np.linalg.inv(camera_pose) | |
if resolution != (224, 224): | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath | |
) | |
else: | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics, (512, 384), rng=rng, info=impath | |
) | |
W, H = rgb_image.size | |
cx = W // 2 | |
cy = H // 2 | |
l, t = cx - 112, cy - 112 | |
r, b = cx + 112, cy + 112 | |
crop_bbox = (l, t, r, b) | |
rgb_image, depthmap, intrinsics = cropping.crop_image_depthmap( | |
rgb_image, depthmap, intrinsics, crop_bbox | |
) | |
views.append( | |
dict( | |
img=rgb_image, | |
depthmap=depthmap, | |
camera_pose=camera_pose, | |
camera_intrinsics=intrinsics, | |
dataset="dtu", | |
label=osp.join(scene_id, im_idx), | |
instance=impath, | |
) | |
) | |
return views | |
class NRGBD(BaseStereoViewDataset): | |
def __init__( | |
self, | |
num_seq=1, | |
num_frames=5, | |
min_thresh=10, | |
max_thresh=100, | |
test_id=None, | |
full_video=False, | |
tuple_list=None, | |
seq_id=None, | |
rebuttal=False, | |
shuffle_seed=-1, | |
kf_every=1, | |
*args, | |
ROOT, | |
**kwargs, | |
): | |
self.ROOT = ROOT | |
super().__init__(*args, **kwargs) | |
self.num_seq = num_seq | |
self.num_frames = num_frames | |
self.max_thresh = max_thresh | |
self.min_thresh = min_thresh | |
self.test_id = test_id | |
self.full_video = full_video | |
self.kf_every = kf_every | |
self.seq_id = seq_id | |
self.rebuttal = rebuttal | |
self.shuffle_seed = shuffle_seed | |
# load all scenes | |
self.load_all_tuples(tuple_list) | |
self.load_all_scenes(ROOT) | |
def __len__(self): | |
if self.tuple_list is not None: | |
return len(self.tuple_list) | |
return len(self.scene_list) * self.num_seq | |
def load_all_tuples(self, tuple_list): | |
if tuple_list is not None: | |
self.tuple_list = tuple_list | |
# with open(tuple_path) as f: | |
# self.tuple_list = f.read().splitlines() | |
else: | |
self.tuple_list = None | |
def load_all_scenes(self, base_dir): | |
scenes = [ | |
d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d)) | |
] | |
if self.test_id is not None: | |
self.scene_list = [self.test_id] | |
else: | |
self.scene_list = scenes | |
print(f"Found {len(self.scene_list)} sequences in split {self.split}") | |
def load_poses(self, path): | |
file = open(path, "r") | |
lines = file.readlines() | |
file.close() | |
poses = [] | |
valid = [] | |
lines_per_matrix = 4 | |
for i in range(0, len(lines), lines_per_matrix): | |
if "nan" in lines[i]: | |
valid.append(False) | |
poses.append(np.eye(4, 4, dtype=np.float32).tolist()) | |
else: | |
valid.append(True) | |
pose_floats = [ | |
[float(x) for x in line.split()] | |
for line in lines[i : i + lines_per_matrix] | |
] | |
poses.append(pose_floats) | |
return np.array(poses, dtype=np.float32), valid | |
def _get_views(self, idx, resolution, rng): | |
if self.tuple_list is not None: | |
line = self.tuple_list[idx].split(" ") | |
scene_id = line[0] | |
img_idxs = line[1:] | |
else: | |
scene_id = self.scene_list[idx // self.num_seq] | |
num_files = len(os.listdir(os.path.join(self.ROOT, scene_id, "images"))) | |
img_idxs = [f"{i}" for i in range(num_files)] | |
img_idxs = img_idxs[:: min(self.kf_every, len(img_idxs) // 2)] | |
fx, fy, cx, cy = 554.2562584220408, 554.2562584220408, 320, 240 | |
intrinsics_ = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32) | |
posepath = osp.join(self.ROOT, scene_id, f"poses.txt") | |
camera_poses, valids = self.load_poses(posepath) | |
imgs_idxs = deque(img_idxs) | |
if self.shuffle_seed >= 0: | |
imgs_idxs = shuffle_deque(imgs_idxs) | |
views = [] | |
while len(imgs_idxs) > 0: | |
im_idx = imgs_idxs.popleft() | |
impath = osp.join(self.ROOT, scene_id, "images", f"img{im_idx}.png") | |
depthpath = osp.join(self.ROOT, scene_id, "depth", f"depth{im_idx}.png") | |
rgb_image = imread_cv2(impath) | |
depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) | |
depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0 | |
depthmap[depthmap > 10] = 0 | |
depthmap[depthmap < 1e-3] = 0 | |
rgb_image = cv2.resize(rgb_image, (depthmap.shape[1], depthmap.shape[0])) | |
camera_pose = camera_poses[int(im_idx)] | |
# gl to cv | |
camera_pose[:, 1:3] *= -1.0 | |
if resolution != (224, 224) or self.rebuttal: | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics_, resolution, rng=rng, info=impath | |
) | |
else: | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics_, (512, 384), rng=rng, info=impath | |
) | |
W, H = rgb_image.size | |
cx = W // 2 | |
cy = H // 2 | |
l, t = cx - 112, cy - 112 | |
r, b = cx + 112, cy + 112 | |
crop_bbox = (l, t, r, b) | |
rgb_image, depthmap, intrinsics = cropping.crop_image_depthmap( | |
rgb_image, depthmap, intrinsics, crop_bbox | |
) | |
views.append( | |
dict( | |
img=rgb_image, | |
depthmap=depthmap, | |
camera_pose=camera_pose, | |
camera_intrinsics=intrinsics, | |
dataset="nrgbd", | |
label=osp.join(scene_id, im_idx), | |
instance=impath, | |
) | |
) | |
return views | |