Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from copy import copy, deepcopy | |
from dust3r.utils.misc import invalid_to_zeros, invalid_to_nans | |
from dust3r.utils.geometry import inv, geotrf, depthmap_to_pts3d | |
from dust3r.utils.camera import pose_encoding_to_camera | |
class BaseCriterion(nn.Module): | |
def __init__(self, reduction="mean"): | |
super().__init__() | |
self.reduction = reduction | |
class Criterion(nn.Module): | |
def __init__(self, criterion=None): | |
super().__init__() | |
assert isinstance( | |
criterion, BaseCriterion | |
), f"{criterion} is not a proper criterion!" | |
self.criterion = copy(criterion) | |
def get_name(self): | |
return f"{type(self).__name__}({self.criterion})" | |
def with_reduction(self, mode="none"): | |
res = loss = deepcopy(self) | |
while loss is not None: | |
assert isinstance(loss, Criterion) | |
loss.criterion.reduction = mode # make it return the loss for each sample | |
loss = loss._loss2 # we assume loss is a Multiloss | |
return res | |
class MultiLoss(nn.Module): | |
"""Easily combinable losses (also keep track of individual loss values): | |
loss = MyLoss1() + 0.1*MyLoss2() | |
Usage: | |
Inherit from this class and override get_name() and compute_loss() | |
""" | |
def __init__(self): | |
super().__init__() | |
self._alpha = 1 | |
self._loss2 = None | |
def compute_loss(self, *args, **kwargs): | |
raise NotImplementedError() | |
def get_name(self): | |
raise NotImplementedError() | |
def __mul__(self, alpha): | |
assert isinstance(alpha, (int, float)) | |
res = copy(self) | |
res._alpha = alpha | |
return res | |
__rmul__ = __mul__ # same | |
def __add__(self, loss2): | |
assert isinstance(loss2, MultiLoss) | |
res = cur = copy(self) | |
while cur._loss2 is not None: | |
cur = cur._loss2 | |
cur._loss2 = loss2 | |
return res | |
def __repr__(self): | |
name = self.get_name() | |
if self._alpha != 1: | |
name = f"{self._alpha:g}*{name}" | |
if self._loss2: | |
name = f"{name} + {self._loss2}" | |
return name | |
def forward(self, *args, **kwargs): | |
loss = self.compute_loss(*args, **kwargs) | |
if isinstance(loss, tuple): | |
loss, details = loss | |
elif loss.ndim == 0: | |
details = {self.get_name(): float(loss)} | |
else: | |
details = {} | |
loss = loss * self._alpha | |
if self._loss2: | |
loss2, details2 = self._loss2(*args, **kwargs) | |
loss = loss + loss2 | |
details |= details2 | |
return loss, details | |
class LLoss(BaseCriterion): | |
"""L-norm loss""" | |
def forward(self, a, b): | |
assert ( | |
a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3 | |
), f"Bad shape = {a.shape}" | |
dist = self.distance(a, b) | |
if self.reduction == "none": | |
return dist | |
if self.reduction == "sum": | |
return dist.sum() | |
if self.reduction == "mean": | |
return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) | |
raise ValueError(f"bad {self.reduction=} mode") | |
def distance(self, a, b): | |
raise NotImplementedError() | |
class L21Loss(LLoss): | |
"""Euclidean distance between 3d points""" | |
def distance(self, a, b): | |
return torch.norm(a - b, dim=-1) # normalized L2 distance | |
L21 = L21Loss() | |
def get_pred_pts3d(gt, pred, use_pose=False): | |
if "depth" in pred and "pseudo_focal" in pred: | |
try: | |
pp = gt["camera_intrinsics"][..., :2, 2] | |
except KeyError: | |
pp = None | |
pts3d = depthmap_to_pts3d(**pred, pp=pp) | |
elif "pts3d" in pred: | |
# pts3d from my camera | |
pts3d = pred["pts3d"] | |
elif "pts3d_in_other_view" in pred: | |
# pts3d from the other camera, already transformed | |
assert use_pose is True | |
return pred["pts3d_in_other_view"] # return! | |
if use_pose: | |
camera_pose = pred.get("camera_pose") | |
pts3d = pred.get("pts3d_in_self_view") | |
assert camera_pose is not None | |
assert pts3d is not None | |
pts3d = geotrf(pose_encoding_to_camera(camera_pose), pts3d) | |
return pts3d | |
def Sum(losses, masks, conf=None): | |
loss, mask = losses[0], masks[0] | |
if loss.ndim > 0: | |
# we are actually returning the loss for every pixels | |
if conf is not None: | |
return losses, masks, conf | |
return losses, masks | |
else: | |
# we are returning the global loss | |
for loss2 in losses[1:]: | |
loss = loss + loss2 | |
return loss | |
def get_norm_factor(pts, norm_mode="avg_dis", valids=None, fix_first=True): | |
assert pts[0].ndim >= 3 and pts[0].shape[-1] == 3 | |
assert pts[1] is None or (pts[1].ndim >= 3 and pts[1].shape[-1] == 3) | |
norm_mode, dis_mode = norm_mode.split("_") | |
nan_pts = [] | |
nnzs = [] | |
if norm_mode == "avg": | |
# gather all points together (joint normalization) | |
for i, pt in enumerate(pts): | |
nan_pt, nnz = invalid_to_zeros(pt, valids[i], ndim=3) | |
nan_pts.append(nan_pt) | |
nnzs.append(nnz) | |
if fix_first: | |
break | |
all_pts = torch.cat(nan_pts, dim=1) | |
# compute distance to origin | |
all_dis = all_pts.norm(dim=-1) | |
if dis_mode == "dis": | |
pass # do nothing | |
elif dis_mode == "log1p": | |
all_dis = torch.log1p(all_dis) | |
else: | |
raise ValueError(f"bad {dis_mode=}") | |
norm_factor = all_dis.sum(dim=1) / (torch.cat(nnzs).sum() + 1e-8) | |
else: | |
raise ValueError(f"Not implemented {norm_mode=}") | |
norm_factor = norm_factor.clip(min=1e-8) | |
while norm_factor.ndim < pts[0].ndim: | |
norm_factor.unsqueeze_(-1) | |
return norm_factor | |
def normalize_pointcloud_t( | |
pts, norm_mode="avg_dis", valids=None, fix_first=True, gt=False | |
): | |
if gt: | |
norm_factor = get_norm_factor(pts, norm_mode, valids, fix_first) | |
res = [] | |
for i, pt in enumerate(pts): | |
res.append(pt / norm_factor) | |
else: | |
# pts_l, pts_r = pts | |
# use pts_l and pts_r[-1] as pts to normalize | |
norm_factor = get_norm_factor(pts, norm_mode, valids, fix_first) | |
res = [] | |
for i in range(len(pts)): | |
res.append(pts[i] / norm_factor) | |
# res_r.append(pts_r[i] / norm_factor) | |
# res = [res_l, res_r] | |
return res, norm_factor | |
def get_joint_pointcloud_depth(zs, valid_masks=None, quantile=0.5): | |
# set invalid points to NaN | |
_zs = [] | |
for i in range(len(zs)): | |
valid_mask = valid_masks[i] if valid_masks is not None else None | |
_z = invalid_to_nans(zs[i], valid_mask).reshape(len(zs[i]), -1) | |
_zs.append(_z) | |
_zs = torch.cat(_zs, dim=-1) | |
# compute median depth overall (ignoring nans) | |
if quantile == 0.5: | |
shift_z = torch.nanmedian(_zs, dim=-1).values | |
else: | |
shift_z = torch.nanquantile(_zs, quantile, dim=-1) | |
return shift_z # (B,) | |
def get_joint_pointcloud_center_scale(pts, valid_masks=None, z_only=False, center=True): | |
# set invalid points to NaN | |
_pts = [] | |
for i in range(len(pts)): | |
valid_mask = valid_masks[i] if valid_masks is not None else None | |
_pt = invalid_to_nans(pts[i], valid_mask).reshape(len(pts[i]), -1, 3) | |
_pts.append(_pt) | |
_pts = torch.cat(_pts, dim=1) | |
# compute median center | |
_center = torch.nanmedian(_pts, dim=1, keepdim=True).values # (B,1,3) | |
if z_only: | |
_center[..., :2] = 0 # do not center X and Y | |
# compute median norm | |
_norm = ((_pts - _center) if center else _pts).norm(dim=-1) | |
scale = torch.nanmedian(_norm, dim=1).values | |
return _center[:, None, :, :], scale[:, None, None, None] | |
class Regr3D_t(Criterion, MultiLoss): | |
def __init__(self, criterion, norm_mode="avg_dis", gt_scale=False, fix_first=True): | |
super().__init__(criterion) | |
self.norm_mode = norm_mode | |
self.gt_scale = gt_scale | |
self.fix_first = fix_first | |
def get_all_pts3d_t(self, gts, preds, dist_clip=None): | |
# everything is normalized w.r.t. camera of view1 | |
in_camera1 = inv(gts[0]["camera_pose"]) | |
gt_pts = [] | |
valids = [] | |
pr_pts = [] | |
for i, gt in enumerate(gts): | |
# in_camera1: Bs, 4, 4 gt['pts3d']: Bs, H, W, 3 | |
gt_pts.append(geotrf(in_camera1, gt["pts3d"])) | |
valid = gt["valid_mask"].clone() | |
if dist_clip is not None: | |
# points that are too far-away == invalid | |
dis = gt["pts3d"].norm(dim=-1) | |
valid = valid & (dis <= dist_clip) | |
valids.append(valid) | |
pr_pts.append(get_pred_pts3d(gt, preds[i], use_pose=True)) | |
# if i != len(gts)-1: | |
# pr_pts_l.append(get_pred_pts3d(gt, preds[i][0], use_pose=(i!=0))) | |
# if i != 0: | |
# pr_pts_r.append(get_pred_pts3d(gt, preds[i-1][1], use_pose=(i!=0))) | |
# pr_pts = (pr_pts_l, pr_pts_r) | |
if self.norm_mode: | |
pr_pts, pr_factor = normalize_pointcloud_t( | |
pr_pts, self.norm_mode, valids, fix_first=self.fix_first, gt=False | |
) | |
else: | |
pr_factor = None | |
if self.norm_mode and not self.gt_scale: | |
gt_pts, gt_factor = normalize_pointcloud_t( | |
gt_pts, self.norm_mode, valids, fix_first=self.fix_first, gt=True | |
) | |
else: | |
gt_factor = None | |
return gt_pts, pr_pts, gt_factor, pr_factor, valids, {} | |
def compute_frame_loss(self, gts, preds, **kw): | |
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = ( | |
self.get_all_pts3d_t(gts, preds, **kw) | |
) | |
pred_pts_l, pred_pts_r = pred_pts | |
loss_all = [] | |
mask_all = [] | |
conf_all = [] | |
loss_left = 0 | |
loss_right = 0 | |
pred_conf_l = 0 | |
pred_conf_r = 0 | |
for i in range(len(gt_pts)): | |
# Left (Reference) | |
if i != len(gt_pts) - 1: | |
frame_loss = self.criterion( | |
pred_pts_l[i][masks[i]], gt_pts[i][masks[i]] | |
) | |
loss_all.append(frame_loss) | |
mask_all.append(masks[i]) | |
conf_all.append(preds[i][0]["conf"]) | |
# To compare target/reference loss | |
if i != 0: | |
loss_left += frame_loss.cpu().detach().numpy().mean() | |
pred_conf_l += preds[i][0]["conf"].cpu().detach().numpy().mean() | |
# Right (Target) | |
if i != 0: | |
frame_loss = self.criterion( | |
pred_pts_r[i - 1][masks[i]], gt_pts[i][masks[i]] | |
) | |
loss_all.append(frame_loss) | |
mask_all.append(masks[i]) | |
conf_all.append(preds[i - 1][1]["conf"]) | |
# To compare target/reference loss | |
if i != len(gt_pts) - 1: | |
loss_right += frame_loss.cpu().detach().numpy().mean() | |
pred_conf_r += preds[i - 1][1]["conf"].cpu().detach().numpy().mean() | |
if pr_factor is not None and gt_factor is not None: | |
filter_factor = pr_factor[pr_factor > gt_factor] | |
else: | |
filter_factor = [] | |
if len(filter_factor) > 0: | |
factor_loss = (filter_factor - gt_factor).abs().mean() | |
else: | |
factor_loss = 0.0 | |
self_name = type(self).__name__ | |
details = { | |
self_name + "_pts3d_1": float(loss_all[0].mean()), | |
self_name + "_pts3d_2": float(loss_all[1].mean()), | |
self_name + "loss_left": float(loss_left), | |
self_name + "loss_right": float(loss_right), | |
self_name + "conf_left": float(pred_conf_l), | |
self_name + "conf_right": float(pred_conf_r), | |
} | |
return Sum(loss_all, mask_all, conf_all), (details | monitoring), factor_loss | |
class ConfLoss_t(MultiLoss): | |
"""Weighted regression by learned confidence. | |
Assuming the input pixel_loss is a pixel-level regression loss. | |
Principle: | |
high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10) | |
low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10) | |
alpha: hyperparameter | |
""" | |
def __init__(self, pixel_loss, alpha=1): | |
super().__init__() | |
assert alpha > 0 | |
self.alpha = alpha | |
self.pixel_loss = pixel_loss.with_reduction("none") | |
def get_name(self): | |
return f"ConfLoss({self.pixel_loss})" | |
def get_conf_log(self, x): | |
return x, torch.log(x) | |
def compute_frame_loss(self, gts, preds, **kw): | |
# compute per-pixel loss | |
(losses, masks, confs), details, loss_factor = ( | |
self.pixel_loss.compute_frame_loss(gts, preds, **kw) | |
) | |
# weight by confidence | |
conf_losses = [] | |
conf_sum = 0 | |
for i in range(len(losses)): | |
conf, log_conf = self.get_conf_log(confs[i][masks[i]]) | |
conf_sum += conf.mean() | |
conf_loss = losses[i] * conf - self.alpha * log_conf | |
conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0 | |
conf_losses.append(conf_loss) | |
conf_losses = torch.stack(conf_losses) * 2.0 | |
conf_loss_mean = conf_losses.mean() | |
return ( | |
conf_loss_mean, | |
dict( | |
conf_loss_1=float(conf_losses[0]), | |
conf_loss2=float(conf_losses[1]), | |
conf_mean=conf_sum / len(losses), | |
**details, | |
), | |
loss_factor, | |
) | |
class Regr3D_t_ShiftInv(Regr3D_t): | |
"""Same than Regr3D but invariant to depth shift.""" | |
def get_all_pts3d_t(self, gts, preds): | |
# compute unnormalized points | |
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = ( | |
super().get_all_pts3d_t(gts, preds) | |
) | |
# pred_pts_l, pred_pts_r = pred_pts | |
gt_zs = [gt_pt[..., 2] for gt_pt in gt_pts] | |
pred_zs = [pred_pt[..., 2] for pred_pt in pred_pts] | |
# pred_zs.append(pred_pts_r[-1][..., 2]) | |
# compute median depth | |
gt_shift_z = get_joint_pointcloud_depth(gt_zs, masks)[:, None, None] | |
pred_shift_z = get_joint_pointcloud_depth(pred_zs, masks)[:, None, None] | |
# subtract the median depth | |
for i in range(len(gt_pts)): | |
gt_pts[i][..., 2] -= gt_shift_z | |
for i in range(len(pred_pts)): | |
# for j in range(len(pred_pts[i])): | |
pred_pts[i][..., 2] -= pred_shift_z | |
monitoring = dict( | |
monitoring, | |
gt_shift_z=gt_shift_z.mean().detach(), | |
pred_shift_z=pred_shift_z.mean().detach(), | |
) | |
return gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring | |
class Regr3D_t_ScaleInv(Regr3D_t): | |
"""Same than Regr3D but invariant to depth shift. | |
if gt_scale == True: enforce the prediction to take the same scale than GT | |
""" | |
def get_all_pts3d_t(self, gts, preds): | |
# compute depth-normalized points | |
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = ( | |
super().get_all_pts3d_t(gts, preds) | |
) | |
# measure scene scale | |
# pred_pts_l, pred_pts_r = pred_pts | |
pred_pts_all = [ | |
x.clone() for x in pred_pts | |
] # [pred_pt for pred_pt in pred_pts_l] | |
# pred_pts_all.append(pred_pts_r[-1]) | |
_, gt_scale = get_joint_pointcloud_center_scale(gt_pts, masks) | |
_, pred_scale = get_joint_pointcloud_center_scale(pred_pts_all, masks) | |
# prevent predictions to be in a ridiculous range | |
pred_scale = pred_scale.clip(min=1e-3, max=1e3) | |
# subtract the median depth | |
if self.gt_scale: | |
for i in range(len(pred_pts)): | |
# for j in range(len(pred_pts[i])): | |
pred_pts[i] *= gt_scale / pred_scale | |
else: | |
for i in range(len(pred_pts)): | |
# for j in range(len(pred_pts[i])): | |
pred_pts[i] *= pred_scale / gt_scale | |
for i in range(len(gt_pts)): | |
gt_pts[i] *= gt_scale / pred_scale | |
monitoring = dict( | |
monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach() | |
) | |
return gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring | |
class Regr3D_t_ScaleShiftInv(Regr3D_t_ScaleInv, Regr3D_t_ShiftInv): | |
# calls Regr3D_ShiftInv first, then Regr3D_ScaleInv | |
pass | |