liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import torch
import numpy as np
import cv2
import glob
import argparse
from pathlib import Path
from tqdm import tqdm
from copy import deepcopy
from scipy.optimize import minimize
import os
from collections import defaultdict
def group_by_directory(pathes, idx=-1):
"""
Groups the file paths based on the second-to-last directory in their paths.
Parameters:
- pathes (list): List of file paths.
Returns:
- dict: A dictionary where keys are the second-to-last directory names and values are lists of file paths.
"""
grouped_pathes = defaultdict(list)
for path in pathes:
# Extract the second-to-last directory
dir_name = os.path.dirname(path).split("/")[idx]
grouped_pathes[dir_name].append(path)
return grouped_pathes
def depth2disparity(depth, return_mask=False):
if isinstance(depth, torch.Tensor):
disparity = torch.zeros_like(depth)
elif isinstance(depth, np.ndarray):
disparity = np.zeros_like(depth)
non_negtive_mask = depth > 0
disparity[non_negtive_mask] = 1.0 / depth[non_negtive_mask]
if return_mask:
return disparity, non_negtive_mask
else:
return disparity
def absolute_error_loss(params, predicted_depth, ground_truth_depth):
s, t = params
predicted_aligned = s * predicted_depth + t
abs_error = np.abs(predicted_aligned - ground_truth_depth)
return np.sum(abs_error)
def absolute_value_scaling(predicted_depth, ground_truth_depth, s=1, t=0):
predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1)
ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1)
initial_params = [s, t] # s = 1, t = 0
result = minimize(
absolute_error_loss,
initial_params,
args=(predicted_depth_np, ground_truth_depth_np),
)
s, t = result.x
return s, t
def absolute_value_scaling2(
predicted_depth,
ground_truth_depth,
s_init=1.0,
t_init=0.0,
lr=1e-4,
max_iters=1000,
tol=1e-6,
):
# Initialize s and t as torch tensors with requires_grad=True
s = torch.tensor(
[s_init],
requires_grad=True,
device=predicted_depth.device,
dtype=predicted_depth.dtype,
)
t = torch.tensor(
[t_init],
requires_grad=True,
device=predicted_depth.device,
dtype=predicted_depth.dtype,
)
optimizer = torch.optim.Adam([s, t], lr=lr)
prev_loss = None
for i in range(max_iters):
optimizer.zero_grad()
# Compute predicted aligned depth
predicted_aligned = s * predicted_depth + t
# Compute absolute error
abs_error = torch.abs(predicted_aligned - ground_truth_depth)
# Compute loss
loss = torch.sum(abs_error)
# Backpropagate
loss.backward()
# Update parameters
optimizer.step()
# Check convergence
if prev_loss is not None and torch.abs(prev_loss - loss) < tol:
break
prev_loss = loss.item()
return s.detach().item(), t.detach().item()
def depth_evaluation(
predicted_depth_original,
ground_truth_depth_original,
max_depth=80,
custom_mask=None,
post_clip_min=None,
post_clip_max=None,
pre_clip_min=None,
pre_clip_max=None,
align_with_lstsq=False,
align_with_lad=False,
align_with_lad2=False,
metric_scale=False,
lr=1e-4,
max_iters=1000,
use_gpu=False,
align_with_scale=False,
disp_input=False,
):
"""
Evaluate the depth map using various metrics and return a depth error parity map, with an option for least squares alignment.
Args:
predicted_depth (numpy.ndarray or torch.Tensor): The predicted depth map.
ground_truth_depth (numpy.ndarray or torch.Tensor): The ground truth depth map.
max_depth (float): The maximum depth value to consider. Default is 80 meters.
align_with_lstsq (bool): If True, perform least squares alignment of the predicted depth with ground truth.
Returns:
dict: A dictionary containing the evaluation metrics.
torch.Tensor: The depth error parity map.
"""
if isinstance(predicted_depth_original, np.ndarray):
predicted_depth_original = torch.from_numpy(predicted_depth_original)
if isinstance(ground_truth_depth_original, np.ndarray):
ground_truth_depth_original = torch.from_numpy(ground_truth_depth_original)
if custom_mask is not None and isinstance(custom_mask, np.ndarray):
custom_mask = torch.from_numpy(custom_mask)
# if the dimension is 3, flatten to 2d along the batch dimension
if predicted_depth_original.dim() == 3:
_, h, w = predicted_depth_original.shape
predicted_depth_original = predicted_depth_original.view(-1, w)
ground_truth_depth_original = ground_truth_depth_original.view(-1, w)
if custom_mask is not None:
custom_mask = custom_mask.view(-1, w)
# put to device
if use_gpu:
predicted_depth_original = predicted_depth_original.cuda()
ground_truth_depth_original = ground_truth_depth_original.cuda()
# Filter out depths greater than max_depth
if max_depth is not None:
mask = (ground_truth_depth_original > 0) & (
ground_truth_depth_original < max_depth
)
else:
mask = ground_truth_depth_original > 0
predicted_depth = predicted_depth_original[mask]
ground_truth_depth = ground_truth_depth_original[mask]
# Clip the depth values
if pre_clip_min is not None:
predicted_depth = torch.clamp(predicted_depth, min=pre_clip_min)
if pre_clip_max is not None:
predicted_depth = torch.clamp(predicted_depth, max=pre_clip_max)
if disp_input: # align the pred to gt in the disparity space
real_gt = ground_truth_depth.clone()
ground_truth_depth = 1 / (ground_truth_depth + 1e-8)
# various alignment methods
if metric_scale:
predicted_depth = predicted_depth
elif align_with_lstsq:
# Convert to numpy for lstsq
predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1, 1)
ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1, 1)
# Add a column of ones for the shift term
A = np.hstack([predicted_depth_np, np.ones_like(predicted_depth_np)])
# Solve for scale (s) and shift (t) using least squares
result = np.linalg.lstsq(A, ground_truth_depth_np, rcond=None)
s, t = result[0][0], result[0][1]
# convert to torch tensor
s = torch.tensor(s, device=predicted_depth_original.device)
t = torch.tensor(t, device=predicted_depth_original.device)
# Apply scale and shift
predicted_depth = s * predicted_depth + t
elif align_with_lad:
s, t = absolute_value_scaling(
predicted_depth,
ground_truth_depth,
s=torch.median(ground_truth_depth) / torch.median(predicted_depth),
)
predicted_depth = s * predicted_depth + t
elif align_with_lad2:
s_init = (
torch.median(ground_truth_depth) / torch.median(predicted_depth)
).item()
s, t = absolute_value_scaling2(
predicted_depth,
ground_truth_depth,
s_init=s_init,
lr=lr,
max_iters=max_iters,
)
predicted_depth = s * predicted_depth + t
elif align_with_scale:
# Compute initial scale factor 's' using the closed-form solution (L2 norm)
dot_pred_gt = torch.nanmean(ground_truth_depth)
dot_pred_pred = torch.nanmean(predicted_depth)
s = dot_pred_gt / dot_pred_pred
# Iterative reweighted least squares using the Weiszfeld method
for _ in range(10):
# Compute residuals between scaled predictions and ground truth
residuals = s * predicted_depth - ground_truth_depth
abs_residuals = (
residuals.abs() + 1e-8
) # Add small constant to avoid division by zero
# Compute weights inversely proportional to the residuals
weights = 1.0 / abs_residuals
# Update 's' using weighted sums
weighted_dot_pred_gt = torch.sum(
weights * predicted_depth * ground_truth_depth
)
weighted_dot_pred_pred = torch.sum(weights * predicted_depth**2)
s = weighted_dot_pred_gt / weighted_dot_pred_pred
# Optionally clip 's' to prevent extreme scaling
s = s.clamp(min=1e-3)
# Detach 's' if you want to stop gradients from flowing through it
s = s.detach()
# Apply the scale factor to the predicted depth
predicted_depth = s * predicted_depth
else:
# Align the predicted depth with the ground truth using median scaling
scale_factor = torch.median(ground_truth_depth) / torch.median(predicted_depth)
predicted_depth *= scale_factor
if disp_input:
# convert back to depth
ground_truth_depth = real_gt
predicted_depth = depth2disparity(predicted_depth)
# Clip the predicted depth values
if post_clip_min is not None:
predicted_depth = torch.clamp(predicted_depth, min=post_clip_min)
if post_clip_max is not None:
predicted_depth = torch.clamp(predicted_depth, max=post_clip_max)
if custom_mask is not None:
assert custom_mask.shape == ground_truth_depth_original.shape
mask_within_mask = custom_mask.cpu()[mask]
predicted_depth = predicted_depth[mask_within_mask]
ground_truth_depth = ground_truth_depth[mask_within_mask]
# Calculate the metrics
abs_rel = torch.mean(
torch.abs(predicted_depth - ground_truth_depth) / ground_truth_depth
).item()
sq_rel = torch.mean(
((predicted_depth - ground_truth_depth) ** 2) / ground_truth_depth
).item()
# Correct RMSE calculation
rmse = torch.sqrt(torch.mean((predicted_depth - ground_truth_depth) ** 2)).item()
# Clip the depth values to avoid log(0)
predicted_depth = torch.clamp(predicted_depth, min=1e-5)
log_rmse = torch.sqrt(
torch.mean((torch.log(predicted_depth) - torch.log(ground_truth_depth)) ** 2)
).item()
# Calculate the accuracy thresholds
max_ratio = torch.maximum(
predicted_depth / ground_truth_depth, ground_truth_depth / predicted_depth
)
threshold_0 = torch.mean((max_ratio < 1.0).float()).item()
threshold_1 = torch.mean((max_ratio < 1.25).float()).item()
threshold_2 = torch.mean((max_ratio < 1.25**2).float()).item()
threshold_3 = torch.mean((max_ratio < 1.25**3).float()).item()
# Compute the depth error parity map
if metric_scale:
predicted_depth_original = predicted_depth_original
if disp_input:
predicted_depth_original = depth2disparity(predicted_depth_original)
depth_error_parity_map = (
torch.abs(predicted_depth_original - ground_truth_depth_original)
/ ground_truth_depth_original
)
elif align_with_lstsq or align_with_lad or align_with_lad2:
predicted_depth_original = predicted_depth_original * s + t
if disp_input:
predicted_depth_original = depth2disparity(predicted_depth_original)
depth_error_parity_map = (
torch.abs(predicted_depth_original - ground_truth_depth_original)
/ ground_truth_depth_original
)
elif align_with_scale:
predicted_depth_original = predicted_depth_original * s
if disp_input:
predicted_depth_original = depth2disparity(predicted_depth_original)
depth_error_parity_map = (
torch.abs(predicted_depth_original - ground_truth_depth_original)
/ ground_truth_depth_original
)
else:
predicted_depth_original = predicted_depth_original * scale_factor
if disp_input:
predicted_depth_original = depth2disparity(predicted_depth_original)
depth_error_parity_map = (
torch.abs(predicted_depth_original - ground_truth_depth_original)
/ ground_truth_depth_original
)
# Reshape the depth_error_parity_map back to the original image size
depth_error_parity_map_full = torch.zeros_like(ground_truth_depth_original)
depth_error_parity_map_full = torch.where(
mask, depth_error_parity_map, depth_error_parity_map_full
)
predict_depth_map_full = predicted_depth_original
gt_depth_map_full = torch.zeros_like(ground_truth_depth_original)
gt_depth_map_full = torch.where(
mask, ground_truth_depth_original, gt_depth_map_full
)
num_valid_pixels = (
torch.sum(mask).item()
if custom_mask is None
else torch.sum(mask_within_mask).item()
)
if num_valid_pixels == 0:
(
abs_rel,
sq_rel,
rmse,
log_rmse,
threshold_0,
threshold_1,
threshold_2,
threshold_3,
) = (0, 0, 0, 0, 0, 0, 0, 0)
results = {
"Abs Rel": abs_rel,
"Sq Rel": sq_rel,
"RMSE": rmse,
"Log RMSE": log_rmse,
"δ < 1.": threshold_0,
"δ < 1.25": threshold_1,
"δ < 1.25^2": threshold_2,
"δ < 1.25^3": threshold_3,
"valid_pixels": num_valid_pixels,
}
return (
results,
depth_error_parity_map_full,
predict_depth_map_full,
gt_depth_map_full,
)