vmem / train.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
raw
history blame
9.66 kB
import argparse
from datetime import datetime
import random
import os
import time
import multiprocessing
# Set multiprocessing start method to 'spawn' to avoid CUDA initialization issues in forked processes
multiprocessing.set_start_method('spawn', force=True)
from tqdm.auto import tqdm # Progress bar
import numpy as np
from omegaconf import OmegaConf
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import SequentialLR, LambdaLR, CosineAnnealingLR, ExponentialLR # Importing CosineAnnealingLR scheduler
import torch.nn.functional as F
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import set_seed # Removed get_scheduler import
from peft import get_peft_model, LoraConfig
from modeling import VMemModel
from modeling.modules.autoencoder import AutoEncoder
from modeling.sampling import DDPMDiscretization, DiscreteDenoiser, create_samplers
from modeling.modules.conditioner import CLIPConditioner
from utils.training_utils import DiffusionTrainer, load_pretrained_model
from data.dataset import RealEstatePoseImageSevaDataset
# set random seed for reproducibility
torch.manual_seed(42)
random.seed(42)
np.random.seed(42)
def parse_args():
parser = argparse.ArgumentParser(description='Train a model')
parser.add_argument('--config', type=str, default="", required=True, help='Path to the config file')
args = parser.parse_args()
return args
def generate_current_datetime():
return datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
def prepare_model(unet, config):
assert isinstance(unet, VMemModel), "unet should be an instance of VMemModel"
if config.training.lora_flag:
target_modules = []
for name, param in unet.named_parameters():
# # if ("temporal" in name or "transformer" in name) and "norm" not in name:
print(name)
if ("transformer" in name or "emb" in name or "layers" in name) \
and "norm" not in name and "in_layers.0" not in name and "out_layers.0" not in name:
# print(name)
name = name.replace(".weight", "")
name = name.replace(".bias", "")
if name not in target_modules:
target_modules.append(str(name))
lora_config = LoraConfig(
r=config.training.lora_r,
lora_alpha=config.training.lora_alpha,
target_modules=target_modules,
lora_dropout=config.training.lora_dropout,
# bias="none",
)
lora_config.target_modules = target_modules
unet = get_peft_model(unet, lora_config)
# for name, param in unet.named_parameters():
# if "camera" in name or "control" in name or "context" in name or "epipolar" in name or "appearance" in name:
# print(name)
# param.requires_grad = True
unet.print_trainable_parameters()
else:
for name, param in unet.named_parameters():
param.requires_grad = True
print("trainable parameters percentage: ", np.sum([p.numel() for p in unet.parameters() if p.requires_grad])/np.sum([p.numel() for p in unet.parameters()]))
return unet
def main():
args = parse_args()
config_path = args.config
config = OmegaConf.load(config_path)
# Load the configuration
num_epochs = config.training.num_epochs
batch_size = config.training.batch_size
learning_rate = config.training.learning_rate
gradient_accumulation_steps = config.training.gradient_accumulation_steps
num_workers = config.training.num_workers
warmup_epochs = config.training.warmup_epochs
max_grad_norm = config.training.max_grad_norm
validation_interval = config.training.validation_interval
visualization_flag = config.training.visualization_flag
visualize_every = config.training.visualize_every
random_seed = config.training.random_seed
save_flag = config.training.save_flag
use_wandb = config.training.use_wandb
samples_dir = config.training.samples_dir
weights_save_dir = config.training.weights_save_dir
resume = config.training.resume
exp_id = generate_current_datetime()
if visualization_flag:
run_visualization_dir = f"{samples_dir}/{exp_id}"
os.makedirs(run_visualization_dir, exist_ok=True)
else:
run_visualization_dir = None
if save_flag:
run_weights_save_dir = f"{weights_save_dir}/{exp_id}"
os.makedirs(run_weights_save_dir, exist_ok=True)
else:
run_weights_save_dir = None
accelerator = Accelerator(
mixed_precision="fp16",
gradient_accumulation_steps=gradient_accumulation_steps,
kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=False)],
)
num_gpus = accelerator.num_processes
if random_seed is not None:
set_seed(random_seed, device_specific=True)
device = accelerator.device
model = load_pretrained_model(cache_dir=config.model.cache_dir, device=device)
model = prepare_model(model, config)
if resume:
model.load_state_dict(torch.load(resume, map_location='cpu'), strict=False)
torch.cuda.empty_cache()
# model = model.to(device)
# time.sleep(100*3600)
train_dataset = RealEstatePoseImageSevaDataset(rgb_data_dir=config.dataset.realestate10k.rgb_data_dir,
meta_info_dir=config.dataset.realestate10k.meta_info_dir,
num_sample_per_episode=config.dataset.realestate10k.num_sample_per_episode,
mode='train')
val_dataset = RealEstatePoseImageSevaDataset(rgb_data_dir=config.dataset.realestate10k.rgb_data_dir,
meta_info_dir=config.dataset.realestate10k.meta_info_dir,
num_sample_per_episode=config.dataset.realestate10k.val_num_sample_per_episode,
mode='test')
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, multiprocessing_context='spawn')
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, multiprocessing_context='spawn')
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=config.training.weight_decay)
train_steps_per_epoch = len(train_dataloader)
total_train_steps = num_epochs * train_steps_per_epoch
warmup_steps = warmup_epochs * train_steps_per_epoch
lr_scheduler = CosineAnnealingLR(
optimizer, T_max=total_train_steps - warmup_steps, eta_min=0
)
# lr_scheduler = ExponentialLR(optimizer, gamma=gamma)
if warmup_epochs > 0:
def warmup_lambda(current_step):
return float(current_step) / float(max(1, warmup_steps))
warmup_scheduler = LambdaLR(optimizer, lr_lambda=warmup_lambda)
# Combine the schedulers using SequentialLR
lr_scheduler = SequentialLR(
optimizer, schedulers=[warmup_scheduler, lr_scheduler], milestones=[warmup_steps]
)
vae = AutoEncoder(chunk_size=1).to(device)
vae.eval()
conditioner = CLIPConditioner().to(device)
discretization = DDPMDiscretization()
denoiser = DiscreteDenoiser(discretization=discretization, num_idx=1000, device=device)
sampler = create_samplers(guider_types=config.training.guider_types,
discretization=discretization,
num_frames=config.model.num_frames,
num_steps=config.training.inference_num_steps,
cfg_min=config.training.cfg_min,
device=device)
(model,
vae,
train_dataloader,
val_dataloader,
optimizer,
lr_scheduler) = accelerator.prepare(
model,
vae,
train_dataloader,
val_dataloader,
optimizer,
lr_scheduler,
)
trainer = DiffusionTrainer(network=model,
ae=vae,
conditioner=conditioner,
denoiser=denoiser,
sampler=sampler,
discretization=discretization,
cfg=config.training.cfg,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
ema_decay=config.training.ema_decay,
device=device,
accelerator=accelerator,
max_grad_norm=max_grad_norm,
save_flag=save_flag,
visualize_flag=visualization_flag)
trainer.train(train_dataloader,
num_epochs,
unconditional_prob=config.training.uncond_prob,
log_every=10,
validation_dataloader=val_dataloader,
validation_interval=validation_interval,
save_dir=run_weights_save_dir,
save_interval=config.training.save_every,
visualize_every=visualize_every,
visualize_dir=run_visualization_dir,
use_wandb=use_wandb)
if __name__ == "__main__":
main()