Spaces:
Runtime error
Runtime error
File size: 31,257 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# --------------------------------------------------------
# training code for CUT3R
# --------------------------------------------------------
# References:
# DUSt3R: https://github.com/naver/dust3r
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import sys
import time
import math
from collections import defaultdict
from pathlib import Path
from typing import Sized
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
from dust3r.model import (
PreTrainedModel,
ARCroco3DStereo,
ARCroco3DStereoConfig,
inf,
strip_module,
) # noqa: F401, needed when loading the model
from dust3r.datasets import get_data_loader
from dust3r.losses import * # noqa: F401, needed when loading the model
from dust3r.inference import loss_of_one_batch, loss_of_one_batch_tbptt # noqa
from dust3r.viz import colorize
from dust3r.utils.render import get_render_results
import dust3r.utils.path_to_croco # noqa: F401
import croco.utils.misc as misc # noqa
from croco.utils.misc import NativeScalerWithGradNormCount as NativeScaler # noqa
import hydra
from omegaconf import OmegaConf
import logging
import pathlib
from tqdm import tqdm
import random
import builtins
import shutil
from accelerate import Accelerator
from accelerate import DistributedDataParallelKwargs, InitProcessGroupKwargs
from accelerate.logging import get_logger
from datetime import timedelta
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy("file_system")
printer = get_logger(__name__, log_level="DEBUG")
def setup_for_distributed(accelerator: Accelerator):
"""
This function disables printing when not in master process
"""
builtin_print = builtins.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
force = force or (accelerator.num_processes > 8)
if accelerator.is_main_process or force:
now = datetime.datetime.now().time()
builtin_print("[{}] ".format(now), end="") # print with time stamp
builtin_print(*args, **kwargs)
builtins.print = print
def save_current_code(outdir):
now = datetime.datetime.now() # current date and time
date_time = now.strftime("%m_%d-%H:%M:%S")
src_dir = "."
dst_dir = os.path.join(outdir, "code", "{}".format(date_time))
shutil.copytree(
src_dir,
dst_dir,
ignore=shutil.ignore_patterns(
".vscode*",
"assets*",
"example*",
"checkpoints*",
"OLD*",
"logs*",
"out*",
"runs*",
"*.png",
"*.mp4",
"*__pycache__*",
"*.git*",
"*.idea*",
"*.zip",
"*.jpg",
),
dirs_exist_ok=True,
)
return dst_dir
def train(args):
accelerator = Accelerator(
gradient_accumulation_steps=args.accum_iter,
mixed_precision="bf16",
kwargs_handlers=[
DistributedDataParallelKwargs(find_unused_parameters=True),
InitProcessGroupKwargs(timeout=timedelta(seconds=6000)),
],
)
device = accelerator.device
setup_for_distributed(accelerator)
printer.info("output_dir: " + args.output_dir)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
if accelerator.is_main_process:
dst_dir = save_current_code(outdir=args.output_dir)
printer.info(f"Saving current code to {dst_dir}")
# auto resume
if not args.resume:
last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth")
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None
printer.info("job dir: {}".format(os.path.dirname(os.path.realpath(__file__))))
# fix the seed
seed = args.seed + accelerator.state.process_index
printer.info(
f"Setting seed to {seed} for process {accelerator.state.process_index}"
)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = args.benchmark
# training dataset and loader
printer.info("Building train dataset %s", args.train_dataset)
# dataset and loader
data_loader_train = build_dataset(
args.train_dataset,
args.batch_size,
args.num_workers,
accelerator=accelerator,
test=False,
fixed_length=args.fixed_length
)
printer.info("Building test dataset %s", args.test_dataset)
data_loader_test = {
dataset.split("(")[0]: build_dataset(
dataset,
args.batch_size,
args.num_workers,
accelerator=accelerator,
test=True,
fixed_length=True
)
for dataset in args.test_dataset.split("+")
}
# model
printer.info("Loading model: %s", args.model)
model: PreTrainedModel = eval(args.model)
printer.info(f"All model parameters: {sum(p.numel() for p in model.parameters())}")
printer.info(
f"Encoder parameters: {sum(p.numel() for p in model.enc_blocks.parameters())}"
)
printer.info(
f"Decoder parameters: {sum(p.numel() for p in model.dec_blocks.parameters())}"
)
printer.info(f">> Creating train criterion = {args.train_criterion}")
train_criterion = eval(args.train_criterion).to(device)
printer.info(
f">> Creating test criterion = {args.test_criterion or args.train_criterion}"
)
test_criterion = eval(args.test_criterion or args.criterion).to(device)
model.to(device)
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
if args.long_context:
model.fixed_input_length = False
if args.pretrained and not args.resume:
printer.info(f"Loading pretrained: {args.pretrained}")
ckpt = torch.load(args.pretrained, map_location=device)
load_only_encoder = getattr(args, "load_only_encoder", False)
if load_only_encoder:
filtered_state_dict = {
k: v
for k, v in ckpt["model"].items()
if "enc_blocks" in k or "patch_embed" in k
}
printer.info(
model.load_state_dict(strip_module(filtered_state_dict), strict=False)
)
else:
printer.info(
model.load_state_dict(strip_module(ckpt["model"]), strict=False)
)
del ckpt # in case it occupies memory
# # following timm: set wd as 0 for bias and norm layers
param_groups = misc.get_parameter_groups(model, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
# print(optimizer)
loss_scaler = NativeScaler(accelerator=accelerator)
accelerator.even_batches = False
optimizer, model, data_loader_train = accelerator.prepare(
optimizer, model, data_loader_train
)
def write_log_stats(epoch, train_stats, test_stats):
if accelerator.is_main_process:
if log_writer is not None:
log_writer.flush()
log_stats = dict(
epoch=epoch, **{f"train_{k}": v for k, v in train_stats.items()}
)
for test_name in data_loader_test:
if test_name not in test_stats:
continue
log_stats.update(
{test_name + "_" + k: v for k, v in test_stats[test_name].items()}
)
with open(
os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8"
) as f:
f.write(json.dumps(log_stats) + "\n")
def save_model(epoch, fname, best_so_far):
misc.save_model(
accelerator=accelerator,
args=args,
model_without_ddp=model,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch,
fname=fname,
best_so_far=best_so_far,
)
best_so_far = misc.load_model(
args=args, model_without_ddp=model, optimizer=optimizer, loss_scaler=loss_scaler
)
if best_so_far is None:
best_so_far = float("inf")
log_writer = (
SummaryWriter(log_dir=args.output_dir) if accelerator.is_main_process else None
)
printer.info(f"Start training for {args.epochs} epochs")
start_time = time.time()
train_stats = test_stats = {}
for epoch in range(args.start_epoch, args.epochs + 1):
# Save immediately the last checkpoint
if epoch > args.start_epoch:
if (
args.save_freq
and np.allclose(epoch / args.save_freq, int(epoch / args.save_freq))
or epoch == args.epochs
):
save_model(epoch - 1, "last", best_so_far)
# Test on multiple datasets
new_best = False
if epoch > 0 and args.eval_freq > 0 and epoch % args.eval_freq == 0:
test_stats = {}
for test_name, testset in data_loader_test.items():
stats = test_one_epoch(
model,
test_criterion,
testset,
accelerator,
device,
epoch,
log_writer=log_writer,
args=args,
prefix=test_name,
)
test_stats[test_name] = stats
# Save best of all
if stats["loss_med"] < best_so_far:
best_so_far = stats["loss_med"]
new_best = True
# Save more stuff
write_log_stats(epoch, train_stats, test_stats)
if epoch > args.start_epoch:
if args.keep_freq and epoch % args.keep_freq == 0:
save_model(epoch - 1, str(epoch), best_so_far)
if new_best:
save_model(epoch - 1, "best", best_so_far)
if epoch >= args.epochs:
break # exit after writing last test to disk
# Train
train_stats = train_one_epoch(
model,
train_criterion,
data_loader_train,
optimizer,
accelerator,
epoch,
loss_scaler,
log_writer=log_writer,
args=args,
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
printer.info("Training time {}".format(total_time_str))
save_final_model(accelerator, args, args.epochs, model, best_so_far=best_so_far)
def save_final_model(accelerator, args, epoch, model_without_ddp, best_so_far=None):
output_dir = Path(args.output_dir)
checkpoint_path = output_dir / "checkpoint-final.pth"
to_save = {
"args": args,
"model": (
model_without_ddp
if isinstance(model_without_ddp, dict)
else model_without_ddp.cpu().state_dict()
),
"epoch": epoch,
}
if best_so_far is not None:
to_save["best_so_far"] = best_so_far
printer.info(f">> Saving model to {checkpoint_path} ...")
misc.save_on_master(accelerator, to_save, checkpoint_path)
def build_dataset(dataset, batch_size, num_workers, accelerator, test=False, fixed_length=False):
split = ["Train", "Test"][test]
printer.info(f"Building {split} Data loader for dataset: {dataset}")
loader = get_data_loader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_mem=True,
shuffle=not (test),
drop_last=not (test),
accelerator=accelerator,
fixed_length=fixed_length
)
return loader
def train_one_epoch(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Sized,
optimizer: torch.optim.Optimizer,
accelerator: Accelerator,
epoch: int,
loss_scaler,
args,
log_writer=None,
):
assert torch.backends.cuda.matmul.allow_tf32 == True
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = "Epoch: [{}]".format(epoch)
accum_iter = args.accum_iter
def save_model(epoch, fname, best_so_far):
misc.save_model(
accelerator=accelerator,
args=args,
model_without_ddp=model,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch,
fname=fname,
best_so_far=best_so_far,
)
if log_writer is not None:
printer.info("log_dir: {}".format(log_writer.log_dir))
if hasattr(data_loader, "dataset") and hasattr(data_loader.dataset, "set_epoch"):
data_loader.dataset.set_epoch(epoch)
if (
hasattr(data_loader, "batch_sampler")
and hasattr(data_loader.batch_sampler, "batch_sampler")
and hasattr(data_loader.batch_sampler.batch_sampler, "set_epoch")
):
data_loader.batch_sampler.batch_sampler.set_epoch(epoch)
optimizer.zero_grad()
for data_iter_step, batch in enumerate(
metric_logger.log_every(data_loader, args.print_freq, accelerator, header)
):
with accelerator.accumulate(model):
epoch_f = epoch + data_iter_step / len(data_loader)
step = int(epoch_f * len(data_loader))
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
misc.adjust_learning_rate(optimizer, epoch_f, args)
if not args.long_context:
result = loss_of_one_batch(
batch,
model,
criterion,
accelerator,
symmetrize_batch=False,
use_amp=bool(args.amp),
)
else:
result = loss_of_one_batch_tbptt(
batch,
model,
criterion,
chunk_size=4,
loss_scaler=loss_scaler,
optimizer=optimizer,
accelerator=accelerator,
symmetrize_batch=False,
use_amp=bool(args.amp),
)
loss, loss_details = result["loss"] # criterion returns two values
loss_value = float(loss)
if not math.isfinite(loss_value):
print(
f"Loss is {loss_value}, stopping training, loss details: {loss_details}"
)
sys.exit(1)
if not result.get("already_backprop", False):
loss_scaler(
loss,
optimizer,
parameters=model.parameters(),
update_grad=True,
clip_grad=1.0,
)
optimizer.zero_grad()
is_metric = batch[0]["is_metric"]
curr_num_view = len(batch)
del loss
tb_vis_img = (data_iter_step + 1) % accum_iter == 0 and (
(step + 1) % (args.print_img_freq)
) == 0
if not tb_vis_img:
del batch
else:
torch.cuda.empty_cache()
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(epoch=epoch_f)
metric_logger.update(lr=lr)
metric_logger.update(step=step)
metric_logger.update(loss=loss_value, **loss_details)
if (data_iter_step + 1) % accum_iter == 0 and (
(data_iter_step + 1) % (accum_iter * args.print_freq)
) == 0:
loss_value_reduce = accelerator.gather(
torch.tensor(loss_value).to(accelerator.device)
).mean() # MUST BE EXECUTED BY ALL NODES
if log_writer is None:
continue
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int(epoch_f * 1000)
log_writer.add_scalar("train_loss", loss_value_reduce, step)
log_writer.add_scalar("train_lr", lr, step)
log_writer.add_scalar("train_iter", epoch_1000x, step)
for name, val in loss_details.items():
if isinstance(val, torch.Tensor):
if val.ndim > 0:
continue
if isinstance(val, dict):
continue
log_writer.add_scalar("train_" + name, val, step)
if tb_vis_img:
if log_writer is None:
continue
with torch.no_grad():
depths_self, gt_depths_self = get_render_results(
batch, result["pred"], self_view=True
)
depths_cross, gt_depths_cross = get_render_results(
batch, result["pred"], self_view=False
)
for k in range(len(batch)):
loss_details[f"self_pred_depth_{k+1}"] = (
depths_self[k].detach().cpu()
)
loss_details[f"self_gt_depth_{k+1}"] = (
gt_depths_self[k].detach().cpu()
)
loss_details[f"pred_depth_{k+1}"] = (
depths_cross[k].detach().cpu()
)
loss_details[f"gt_depth_{k+1}"] = (
gt_depths_cross[k].detach().cpu()
)
imgs_stacked_dict = get_vis_imgs_new(
loss_details, args.num_imgs_vis, curr_num_view, is_metric=is_metric
)
for name, imgs_stacked in imgs_stacked_dict.items():
log_writer.add_images(
"train" + "/" + name, imgs_stacked, step, dataformats="HWC"
)
del batch
if (
data_iter_step % int(args.save_freq * len(data_loader)) == 0
and data_iter_step != 0
and data_iter_step != len(data_loader) - 1
):
print("saving at step", data_iter_step)
save_model(epoch - 1, "last", float("inf"))
# gather the stats from all processes
metric_logger.synchronize_between_processes(accelerator)
printer.info("Averaged stats: %s", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def test_one_epoch(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Sized,
accelerator: Accelerator,
device: torch.device,
epoch: int,
args,
log_writer=None,
prefix="test",
):
model.eval()
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9))
header = "Test Epoch: [{}]".format(epoch)
if log_writer is not None:
printer.info("log_dir: {}".format(log_writer.log_dir))
if hasattr(data_loader, "dataset") and hasattr(data_loader.dataset, "set_epoch"):
data_loader.dataset.set_epoch(0)
if (
hasattr(data_loader, "batch_sampler")
and hasattr(data_loader.batch_sampler, "batch_sampler")
and hasattr(data_loader.batch_sampler.batch_sampler, "set_epoch")
):
data_loader.batch_sampler.batch_sampler.set_epoch(0)
for _, batch in enumerate(
metric_logger.log_every(data_loader, args.print_freq, accelerator, header)
):
result = loss_of_one_batch(
batch,
model,
criterion,
accelerator,
symmetrize_batch=False,
use_amp=bool(args.amp),
)
loss_value, loss_details = result["loss"] # criterion returns two values
metric_logger.update(loss=float(loss_value), **loss_details)
printer.info("Averaged stats: %s", metric_logger)
aggs = [("avg", "global_avg"), ("med", "median")]
results = {
f"{k}_{tag}": getattr(meter, attr)
for k, meter in metric_logger.meters.items()
for tag, attr in aggs
}
if log_writer is not None:
for name, val in results.items():
if isinstance(val, torch.Tensor):
if val.ndim > 0:
continue
if isinstance(val, dict):
continue
log_writer.add_scalar(prefix + "_" + name, val, 1000 * epoch)
depths_self, gt_depths_self = get_render_results(
batch, result["pred"], self_view=True
)
depths_cross, gt_depths_cross = get_render_results(
batch, result["pred"], self_view=False
)
for k in range(len(batch)):
loss_details[f"self_pred_depth_{k+1}"] = depths_self[k].detach().cpu()
loss_details[f"self_gt_depth_{k+1}"] = gt_depths_self[k].detach().cpu()
loss_details[f"pred_depth_{k+1}"] = depths_cross[k].detach().cpu()
loss_details[f"gt_depth_{k+1}"] = gt_depths_cross[k].detach().cpu()
imgs_stacked_dict = get_vis_imgs_new(
loss_details,
args.num_imgs_vis,
args.num_test_views,
is_metric=batch[0]["is_metric"],
)
for name, imgs_stacked in imgs_stacked_dict.items():
log_writer.add_images(
prefix + "/" + name, imgs_stacked, 1000 * epoch, dataformats="HWC"
)
del loss_details, loss_value, batch
torch.cuda.empty_cache()
return results
def batch_append(original_list, new_list):
for sublist, new_item in zip(original_list, new_list):
sublist.append(new_item)
return original_list
def gen_mask_indicator(img_mask_list, ray_mask_list, num_views, h, w):
output = []
for img_mask, ray_mask in zip(img_mask_list, ray_mask_list):
out = torch.zeros((h, w * num_views, 3))
for i in range(num_views):
if img_mask[i] and not ray_mask[i]:
offset = 0
elif not img_mask[i] and ray_mask[i]:
offset = 1
else:
offset = 0.5
out[:, i * w : (i + 1) * w] += offset
output.append(out)
return output
def vis_and_cat(
gt_imgs,
pred_imgs,
cross_gt_depths,
cross_pred_depths,
self_gt_depths,
self_pred_depths,
cross_conf,
self_conf,
ray_indicator,
is_metric,
):
cross_depth_gt_min = torch.quantile(cross_gt_depths, 0.01).item()
cross_depth_gt_max = torch.quantile(cross_gt_depths, 0.99).item()
cross_depth_pred_min = torch.quantile(cross_pred_depths, 0.01).item()
cross_depth_pred_max = torch.quantile(cross_pred_depths, 0.99).item()
cross_depth_min = min(cross_depth_gt_min, cross_depth_pred_min)
cross_depth_max = max(cross_depth_gt_max, cross_depth_pred_max)
cross_gt_depths_vis = colorize(
cross_gt_depths,
range=(
(cross_depth_min, cross_depth_max)
if is_metric
else (cross_depth_gt_min, cross_depth_gt_max)
),
append_cbar=True,
)
cross_pred_depths_vis = colorize(
cross_pred_depths,
range=(
(cross_depth_min, cross_depth_max)
if is_metric
else (cross_depth_pred_min, cross_depth_pred_max)
),
append_cbar=True,
)
self_depth_gt_min = torch.quantile(self_gt_depths, 0.01).item()
self_depth_gt_max = torch.quantile(self_gt_depths, 0.99).item()
self_depth_pred_min = torch.quantile(self_pred_depths, 0.01).item()
self_depth_pred_max = torch.quantile(self_pred_depths, 0.99).item()
self_depth_min = min(self_depth_gt_min, self_depth_pred_min)
self_depth_max = max(self_depth_gt_max, self_depth_pred_max)
self_gt_depths_vis = colorize(
self_gt_depths,
range=(
(self_depth_min, self_depth_max)
if is_metric
else (self_depth_gt_min, self_depth_gt_max)
),
append_cbar=True,
)
self_pred_depths_vis = colorize(
self_pred_depths,
range=(
(self_depth_min, self_depth_max)
if is_metric
else (self_depth_pred_min, self_depth_pred_max)
),
append_cbar=True,
)
if len(cross_conf) > 0:
cross_conf_vis = colorize(cross_conf, append_cbar=True)
if len(self_conf) > 0:
self_conf_vis = colorize(self_conf, append_cbar=True)
gt_imgs_vis = torch.zeros_like(cross_gt_depths_vis)
gt_imgs_vis[: gt_imgs.shape[0], : gt_imgs.shape[1]] = gt_imgs
pred_imgs_vis = torch.zeros_like(cross_gt_depths_vis)
pred_imgs_vis[: pred_imgs.shape[0], : pred_imgs.shape[1]] = pred_imgs
ray_indicator_vis = torch.cat(
[
ray_indicator,
torch.zeros(
ray_indicator.shape[0],
cross_pred_depths_vis.shape[1] - ray_indicator.shape[1],
3,
),
],
dim=1,
)
out = torch.cat(
[
ray_indicator_vis,
gt_imgs_vis,
pred_imgs_vis,
self_gt_depths_vis,
self_pred_depths_vis,
self_conf_vis,
cross_gt_depths_vis,
cross_pred_depths_vis,
cross_conf_vis,
],
dim=0,
)
return out
def get_vis_imgs_new(loss_details, num_imgs_vis, num_views, is_metric):
ret_dict = {}
gt_img_list = [[] for _ in range(num_imgs_vis)]
pred_img_list = [[] for _ in range(num_imgs_vis)]
cross_gt_depth_list = [[] for _ in range(num_imgs_vis)]
cross_pred_depth_list = [[] for _ in range(num_imgs_vis)]
self_gt_depth_list = [[] for _ in range(num_imgs_vis)]
self_pred_depth_list = [[] for _ in range(num_imgs_vis)]
cross_view_conf_list = [[] for _ in range(num_imgs_vis)]
self_view_conf_list = [[] for _ in range(num_imgs_vis)]
cross_view_conf_exits = False
self_view_conf_exits = False
img_mask_list = [[] for _ in range(num_imgs_vis)]
ray_mask_list = [[] for _ in range(num_imgs_vis)]
if num_views > 30:
stride = 5
elif num_views > 20:
stride = 3
elif num_views > 10:
stride = 2
else:
stride = 1
for i in range(0, num_views, stride):
gt_imgs = 0.5 * (loss_details[f"gt_img{i+1}"] + 1)[:num_imgs_vis].detach().cpu()
width = gt_imgs.shape[2]
pred_imgs = (
0.5 * (loss_details[f"pred_rgb_{i+1}"] + 1)[:num_imgs_vis].detach().cpu()
)
gt_img_list = batch_append(gt_img_list, gt_imgs.unbind(dim=0))
pred_img_list = batch_append(pred_img_list, pred_imgs.unbind(dim=0))
cross_pred_depths = (
loss_details[f"pred_depth_{i+1}"][:num_imgs_vis].detach().cpu()
)
cross_gt_depths = (
loss_details[f"gt_depth_{i+1}"]
.to(gt_imgs.device)[:num_imgs_vis]
.detach()
.cpu()
)
cross_pred_depth_list = batch_append(
cross_pred_depth_list, cross_pred_depths.unbind(dim=0)
)
cross_gt_depth_list = batch_append(
cross_gt_depth_list, cross_gt_depths.unbind(dim=0)
)
self_gt_depths = (
loss_details[f"self_gt_depth_{i+1}"][:num_imgs_vis].detach().cpu()
)
self_pred_depths = (
loss_details[f"self_pred_depth_{i+1}"][:num_imgs_vis].detach().cpu()
)
self_gt_depth_list = batch_append(
self_gt_depth_list, self_gt_depths.unbind(dim=0)
)
self_pred_depth_list = batch_append(
self_pred_depth_list, self_pred_depths.unbind(dim=0)
)
if f"conf_{i+1}" in loss_details:
cross_view_conf = loss_details[f"conf_{i+1}"][:num_imgs_vis].detach().cpu()
cross_view_conf_list = batch_append(
cross_view_conf_list, cross_view_conf.unbind(dim=0)
)
cross_view_conf_exits = True
if f"self_conf_{i+1}" in loss_details:
self_view_conf = (
loss_details[f"self_conf_{i+1}"][:num_imgs_vis].detach().cpu()
)
self_view_conf_list = batch_append(
self_view_conf_list, self_view_conf.unbind(dim=0)
)
self_view_conf_exits = True
img_mask_list = batch_append(
img_mask_list,
loss_details[f"img_mask_{i+1}"][:num_imgs_vis].detach().cpu().unbind(dim=0),
)
ray_mask_list = batch_append(
ray_mask_list,
loss_details[f"ray_mask_{i+1}"][:num_imgs_vis].detach().cpu().unbind(dim=0),
)
# each element in the list is [H, num_views * W, (3)], the size of the list is num_imgs_vis
gt_img_list = [torch.cat(sublist, dim=1) for sublist in gt_img_list]
pred_img_list = [torch.cat(sublist, dim=1) for sublist in pred_img_list]
cross_pred_depth_list = [
torch.cat(sublist, dim=1) for sublist in cross_pred_depth_list
]
cross_gt_depth_list = [torch.cat(sublist, dim=1) for sublist in cross_gt_depth_list]
self_gt_depth_list = [torch.cat(sublist, dim=1) for sublist in self_gt_depth_list]
self_pred_depth_list = [
torch.cat(sublist, dim=1) for sublist in self_pred_depth_list
]
cross_view_conf_list = (
[torch.cat(sublist, dim=1) for sublist in cross_view_conf_list]
if cross_view_conf_exits
else []
)
self_view_conf_list = (
[torch.cat(sublist, dim=1) for sublist in self_view_conf_list]
if self_view_conf_exits
else []
)
# each elment in the list is [num_views,], the size of the list is num_imgs_vis
img_mask_list = [torch.stack(sublist, dim=0) for sublist in img_mask_list]
ray_mask_list = [torch.stack(sublist, dim=0) for sublist in ray_mask_list]
ray_indicator = gen_mask_indicator(
img_mask_list, ray_mask_list, len(img_mask_list[0]), 30, width
)
for i in range(num_imgs_vis):
out = vis_and_cat(
gt_img_list[i],
pred_img_list[i],
cross_gt_depth_list[i],
cross_pred_depth_list[i],
self_gt_depth_list[i],
self_pred_depth_list[i],
cross_view_conf_list[i],
self_view_conf_list[i],
ray_indicator[i],
is_metric[i],
)
ret_dict[f"imgs_{i}"] = out
return ret_dict
@hydra.main(
version_base=None,
config_path=str(os.path.dirname(os.path.abspath(__file__))) + "/../config",
config_name="train.yaml",
)
def run(cfg: OmegaConf):
OmegaConf.resolve(cfg)
logdir = pathlib.Path(cfg.logdir)
logdir.mkdir(parents=True, exist_ok=True)
train(cfg)
if __name__ == "__main__":
run()
|