Spaces:
Runtime error
Runtime error
File size: 9,119 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# modified from DUSt3R
import os
import torch
import numpy as np
import PIL.Image
from PIL.ImageOps import exif_transpose
import torchvision.transforms as tvf
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2 # noqa
try:
from pillow_heif import register_heif_opener # noqa
register_heif_opener()
heif_support_enabled = True
except ImportError:
heif_support_enabled = False
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
def img_to_arr(img):
if isinstance(img, str):
img = imread_cv2(img)
return img
def imread_cv2(path, options=cv2.IMREAD_COLOR):
"""Open an image or a depthmap with opencv-python."""
if path.endswith((".exr", "EXR")):
options = cv2.IMREAD_ANYDEPTH
img = cv2.imread(path, options)
if img is None:
raise IOError(f"Could not load image={path} with {options=}")
if img.ndim == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def rgb(ftensor, true_shape=None):
if isinstance(ftensor, list):
return [rgb(x, true_shape=true_shape) for x in ftensor]
if isinstance(ftensor, torch.Tensor):
ftensor = ftensor.detach().cpu().numpy() # H,W,3
if ftensor.ndim == 3 and ftensor.shape[0] == 3:
ftensor = ftensor.transpose(1, 2, 0)
elif ftensor.ndim == 4 and ftensor.shape[1] == 3:
ftensor = ftensor.transpose(0, 2, 3, 1)
if true_shape is not None:
H, W = true_shape
ftensor = ftensor[:H, :W]
if ftensor.dtype == np.uint8:
img = np.float32(ftensor) / 255
else:
img = (ftensor * 0.5) + 0.5
return img.clip(min=0, max=1)
def _resize_pil_image(img, long_edge_size):
S = max(img.size)
if S > long_edge_size:
interp = PIL.Image.LANCZOS
elif S <= long_edge_size:
interp = PIL.Image.BICUBIC
new_size = tuple(int(round(x * long_edge_size / S)) for x in img.size)
return img.resize(new_size, interp)
def load_images(folder_or_list, size, square_ok=False, verbose=True):
"""open and convert all images in a list or folder to proper input format for DUSt3R"""
if isinstance(folder_or_list, str):
if verbose:
print(f">> Loading images from {folder_or_list}")
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
elif isinstance(folder_or_list, list):
if verbose:
print(f">> Loading a list of {len(folder_or_list)} images")
root, folder_content = "", folder_or_list
else:
raise ValueError(f"bad {folder_or_list=} ({type(folder_or_list)})")
supported_images_extensions = [".jpg", ".jpeg", ".png", ".bmp"]
if heif_support_enabled:
supported_images_extensions += [".heic", ".heif"]
supported_images_extensions = tuple(supported_images_extensions)
imgs = []
for path in folder_content:
if not path.lower().endswith(supported_images_extensions):
continue
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert("RGB")
W1, H1 = img.size
if size == 224:
img = _resize_pil_image(img, round(size * max(W1 / H1, H1 / W1)))
else:
img = _resize_pil_image(img, size)
W, H = img.size
cx, cy = W // 2, H // 2
if size == 224:
half = min(cx, cy)
img = img.crop((cx - half, cy - half, cx + half, cy + half))
else:
halfw, halfh = ((2 * cx) // 16) * 8, ((2 * cy) // 16) * 8
if not (square_ok) and W == H:
halfh = 3 * halfw / 4
img = img.crop((cx - halfw, cy - halfh, cx + halfw, cy + halfh))
W2, H2 = img.size
if verbose:
print(f" - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}")
imgs.append(
dict(
img=ImgNorm(img)[None],
true_shape=np.int32([img.size[::-1]]),
idx=len(imgs),
instance=str(len(imgs)),
)
)
assert imgs, "no images foud at " + root
if verbose:
print(f" (Found {len(imgs)} images)")
return imgs
def load_images_for_eval(
folder_or_list, size, square_ok=False, verbose=True, crop=True
):
"""open and convert all images in a list or folder to proper input format for DUSt3R"""
if isinstance(folder_or_list, str):
if verbose:
print(f">> Loading images from {folder_or_list}")
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
elif isinstance(folder_or_list, list):
if verbose:
print(f">> Loading a list of {len(folder_or_list)} images")
root, folder_content = "", folder_or_list
else:
raise ValueError(f"bad {folder_or_list=} ({type(folder_or_list)})")
supported_images_extensions = [".jpg", ".jpeg", ".png"]
if heif_support_enabled:
supported_images_extensions += [".heic", ".heif"]
supported_images_extensions = tuple(supported_images_extensions)
imgs = []
for path in folder_content:
if not path.lower().endswith(supported_images_extensions):
continue
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert("RGB")
W1, H1 = img.size
if size == 224:
# resize short side to 224 (then crop)
img = _resize_pil_image(img, round(size * max(W1 / H1, H1 / W1)))
else:
# resize long side to 512
img = _resize_pil_image(img, size)
W, H = img.size
cx, cy = W // 2, H // 2
if size == 224:
half = min(cx, cy)
if crop:
img = img.crop((cx - half, cy - half, cx + half, cy + half))
else: # resize
img = img.resize((2 * half, 2 * half), PIL.Image.LANCZOS)
else:
halfw, halfh = ((2 * cx) // 16) * 8, ((2 * cy) // 16) * 8
if not (square_ok) and W == H:
halfh = 3 * halfw / 4
if crop:
img = img.crop((cx - halfw, cy - halfh, cx + halfw, cy + halfh))
else: # resize
img = img.resize((2 * halfw, 2 * halfh), PIL.Image.LANCZOS)
W2, H2 = img.size
if verbose:
print(f" - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}")
imgs.append(
dict(
img=ImgNorm(img)[None],
true_shape=np.int32([img.size[::-1]]),
idx=len(imgs),
instance=str(len(imgs)),
)
)
assert imgs, "no images foud at " + root
if verbose:
print(f" (Found {len(imgs)} images)")
return imgs
def load_images_512(folder_or_list, size, square_ok=False, verbose=True):
"""open and convert all images in a list or folder to proper input format for DUSt3R"""
if isinstance(folder_or_list, str):
if verbose:
print(f">> Loading images from {folder_or_list}")
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
elif isinstance(folder_or_list, list):
if verbose:
print(f">> Loading a list of {len(folder_or_list)} images")
root, folder_content = "", folder_or_list
else:
raise ValueError(f"bad {folder_or_list=} ({type(folder_or_list)})")
supported_images_extensions = [".jpg", ".jpeg", ".png", ".bmp"]
if heif_support_enabled:
supported_images_extensions += [".heic", ".heif"]
supported_images_extensions = tuple(supported_images_extensions)
imgs = []
for path in folder_content:
if not path.lower().endswith(supported_images_extensions):
continue
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert("RGB")
img = img.resize((512, 384))
W1, H1 = img.size
if size == 224:
img = _resize_pil_image(img, round(size * max(W1 / H1, H1 / W1)))
else:
img = _resize_pil_image(img, size)
W, H = img.size
cx, cy = W // 2, H // 2
if size == 224:
half = min(cx, cy)
img = img.crop((cx - half, cy - half, cx + half, cy + half))
else:
halfw, halfh = ((2 * cx) // 16) * 8, ((2 * cy) // 16) * 8
if not (square_ok) and W == H:
halfh = 3 * halfw / 4
img = img.crop((cx - halfw, cy - halfh, cx + halfw, cy + halfh))
W2, H2 = img.size
if verbose:
print(f" - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}")
imgs.append(
dict(
img=ImgNorm(img)[None],
true_shape=np.int32([img.size[::-1]]),
idx=len(imgs),
instance=str(len(imgs)),
)
)
assert imgs, "no images foud at " + root
if verbose:
print(f" (Found {len(imgs)} images)")
return imgs
|