Spaces:
Runtime error
Runtime error
File size: 17,485 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# modified from DUSt3R
import torch
import numpy as np
from scipy.spatial import cKDTree as KDTree
from dust3r.utils.misc import invalid_to_zeros, invalid_to_nans
from dust3r.utils.device import to_numpy
def xy_grid(
W,
H,
device=None,
origin=(0, 0),
unsqueeze=None,
cat_dim=-1,
homogeneous=False,
**arange_kw,
):
"""Output a (H,W,2) array of int32
with output[j,i,0] = i + origin[0]
output[j,i,1] = j + origin[1]
"""
if device is None:
arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones
else:
arange = lambda *a, **kw: torch.arange(*a, device=device, **kw)
meshgrid, stack = torch.meshgrid, torch.stack
ones = lambda *a: torch.ones(*a, device=device)
tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)]
grid = meshgrid(tw, th, indexing="xy")
if homogeneous:
grid = grid + (ones((H, W)),)
if unsqueeze is not None:
grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze))
if cat_dim is not None:
grid = stack(grid, cat_dim)
return grid
def geotrf(Trf, pts, ncol=None, norm=False):
"""Apply a geometric transformation to a list of 3-D points.
H: 3x3 or 4x4 projection matrix (typically a Homography)
p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
ncol: int. number of columns of the result (2 or 3)
norm: float. if != 0, the resut is projected on the z=norm plane.
Returns an array of projected 2d points.
"""
assert Trf.ndim >= 2
if isinstance(Trf, np.ndarray):
pts = np.asarray(pts)
elif isinstance(Trf, torch.Tensor):
pts = torch.as_tensor(pts, dtype=Trf.dtype)
output_reshape = pts.shape[:-1]
ncol = ncol or pts.shape[-1]
if (
isinstance(Trf, torch.Tensor)
and isinstance(pts, torch.Tensor)
and Trf.ndim == 3
and pts.ndim == 4
):
d = pts.shape[3]
if Trf.shape[-1] == d:
pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts)
elif Trf.shape[-1] == d + 1:
pts = (
torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts)
+ Trf[:, None, None, :d, d]
)
else:
raise ValueError(f"bad shape, not ending with 3 or 4, for {pts.shape=}")
else:
if Trf.ndim >= 3:
n = Trf.ndim - 2
assert Trf.shape[:n] == pts.shape[:n], "batch size does not match"
Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])
if pts.ndim > Trf.ndim:
pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
elif pts.ndim == 2:
pts = pts[:, None, :]
if pts.shape[-1] + 1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2:
pts = pts.swapaxes(-1, -2)
if norm:
pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
if norm != 1:
pts *= norm
res = pts[..., :ncol].reshape(*output_reshape, ncol)
return res
def inv(mat):
"""Invert a torch or numpy matrix"""
if isinstance(mat, torch.Tensor):
return torch.linalg.inv(mat)
if isinstance(mat, np.ndarray):
return np.linalg.inv(mat)
raise ValueError(f"bad matrix type = {type(mat)}")
def depthmap_to_pts3d(depth, pseudo_focal, pp=None, **_):
"""
Args:
- depthmap (BxHxW array):
- pseudo_focal: [B,H,W] ; [B,2,H,W] or [B,1,H,W]
Returns:
pointmap of absolute coordinates (BxHxWx3 array)
"""
if len(depth.shape) == 4:
B, H, W, n = depth.shape
else:
B, H, W = depth.shape
n = None
if len(pseudo_focal.shape) == 3: # [B,H,W]
pseudo_focalx = pseudo_focaly = pseudo_focal
elif len(pseudo_focal.shape) == 4: # [B,2,H,W] or [B,1,H,W]
pseudo_focalx = pseudo_focal[:, 0]
if pseudo_focal.shape[1] == 2:
pseudo_focaly = pseudo_focal[:, 1]
else:
pseudo_focaly = pseudo_focalx
else:
raise NotImplementedError("Error, unknown input focal shape format.")
assert pseudo_focalx.shape == depth.shape[:3]
assert pseudo_focaly.shape == depth.shape[:3]
grid_x, grid_y = xy_grid(W, H, cat_dim=0, device=depth.device)[:, None]
if pp is None:
grid_x = grid_x - (W - 1) / 2
grid_y = grid_y - (H - 1) / 2
else:
grid_x = grid_x.expand(B, -1, -1) - pp[:, 0, None, None]
grid_y = grid_y.expand(B, -1, -1) - pp[:, 1, None, None]
if n is None:
pts3d = torch.empty((B, H, W, 3), device=depth.device)
pts3d[..., 0] = depth * grid_x / pseudo_focalx
pts3d[..., 1] = depth * grid_y / pseudo_focaly
pts3d[..., 2] = depth
else:
pts3d = torch.empty((B, H, W, 3, n), device=depth.device)
pts3d[..., 0, :] = depth * (grid_x / pseudo_focalx)[..., None]
pts3d[..., 1, :] = depth * (grid_y / pseudo_focaly)[..., None]
pts3d[..., 2, :] = depth
return pts3d
def depthmap_to_camera_coordinates(depthmap, camera_intrinsics, pseudo_focal=None):
"""
Args:
- depthmap (HxW array):
- camera_intrinsics: a 3x3 matrix
Returns:
pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels.
"""
camera_intrinsics = np.float32(camera_intrinsics)
H, W = depthmap.shape
assert camera_intrinsics[0, 1] == 0.0
assert camera_intrinsics[1, 0] == 0.0
if pseudo_focal is None:
fu = camera_intrinsics[0, 0]
fv = camera_intrinsics[1, 1]
else:
assert pseudo_focal.shape == (H, W)
fu = fv = pseudo_focal
cu = camera_intrinsics[0, 2]
cv = camera_intrinsics[1, 2]
u, v = np.meshgrid(np.arange(W), np.arange(H))
z_cam = depthmap
x_cam = (u - cu) * z_cam / fu
y_cam = (v - cv) * z_cam / fv
X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(np.float32)
valid_mask = depthmap > 0.0
return X_cam, valid_mask
def depthmap_to_absolute_camera_coordinates(
depthmap, camera_intrinsics, camera_pose, **kw
):
"""
Args:
- depthmap (HxW array):
- camera_intrinsics: a 3x3 matrix
- camera_pose: a 4x3 or 4x4 cam2world matrix
Returns:
pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels.
"""
X_cam, valid_mask = depthmap_to_camera_coordinates(depthmap, camera_intrinsics)
X_world = X_cam # default
if camera_pose is not None:
R_cam2world = camera_pose[:3, :3]
t_cam2world = camera_pose[:3, 3]
X_world = (
np.einsum("ik, vuk -> vui", R_cam2world, X_cam) + t_cam2world[None, None, :]
)
return X_world, valid_mask
def colmap_to_opencv_intrinsics(K):
"""
Modify camera intrinsics to follow a different convention.
Coordinates of the center of the top-left pixels are by default:
- (0.5, 0.5) in Colmap
- (0,0) in OpenCV
"""
K = K.copy()
K[0, 2] -= 0.5
K[1, 2] -= 0.5
return K
def opencv_to_colmap_intrinsics(K):
"""
Modify camera intrinsics to follow a different convention.
Coordinates of the center of the top-left pixels are by default:
- (0.5, 0.5) in Colmap
- (0,0) in OpenCV
"""
K = K.copy()
K[0, 2] += 0.5
K[1, 2] += 0.5
return K
def normalize_pointcloud(
pts1, pts2, norm_mode="avg_dis", valid1=None, valid2=None, ret_factor=False
):
"""renorm pointmaps pts1, pts2 with norm_mode"""
assert pts1.ndim >= 3 and pts1.shape[-1] == 3
assert pts2 is None or (pts2.ndim >= 3 and pts2.shape[-1] == 3)
norm_mode, dis_mode = norm_mode.split("_")
if norm_mode == "avg":
nan_pts1, nnz1 = invalid_to_zeros(pts1, valid1, ndim=3)
nan_pts2, nnz2 = (
invalid_to_zeros(pts2, valid2, ndim=3) if pts2 is not None else (None, 0)
)
all_pts = (
torch.cat((nan_pts1, nan_pts2), dim=1) if pts2 is not None else nan_pts1
)
all_dis = all_pts.norm(dim=-1)
if dis_mode == "dis":
pass # do nothing
elif dis_mode == "log1p":
all_dis = torch.log1p(all_dis)
elif dis_mode == "warp-log1p":
log_dis = torch.log1p(all_dis)
warp_factor = log_dis / all_dis.clip(min=1e-8)
H1, W1 = pts1.shape[1:-1]
pts1 = pts1 * warp_factor[:, : W1 * H1].view(-1, H1, W1, 1)
if pts2 is not None:
H2, W2 = pts2.shape[1:-1]
pts2 = pts2 * warp_factor[:, W1 * H1 :].view(-1, H2, W2, 1)
all_dis = log_dis # this is their true distance afterwards
else:
raise ValueError(f"bad {dis_mode=}")
norm_factor = all_dis.sum(dim=1) / (nnz1 + nnz2 + 1e-8)
else:
nan_pts1 = invalid_to_nans(pts1, valid1, ndim=3)
nan_pts2 = invalid_to_nans(pts2, valid2, ndim=3) if pts2 is not None else None
all_pts = (
torch.cat((nan_pts1, nan_pts2), dim=1) if pts2 is not None else nan_pts1
)
all_dis = all_pts.norm(dim=-1)
if norm_mode == "avg":
norm_factor = all_dis.nanmean(dim=1)
elif norm_mode == "median":
norm_factor = all_dis.nanmedian(dim=1).values.detach()
elif norm_mode == "sqrt":
norm_factor = all_dis.sqrt().nanmean(dim=1) ** 2
else:
raise ValueError(f"bad {norm_mode=}")
norm_factor = norm_factor.clip(min=1e-8)
while norm_factor.ndim < pts1.ndim:
norm_factor.unsqueeze_(-1)
res = pts1 / norm_factor
if pts2 is not None:
res = (res, pts2 / norm_factor)
if ret_factor:
res = res + (norm_factor,)
return res
def normalize_pointcloud_group(
pts_list,
norm_mode="avg_dis",
valid_list=None,
conf_list=None,
ret_factor=False,
ret_factor_only=False,
):
"""renorm pointmaps pts1, pts2 with norm_mode"""
for pts in pts_list:
assert pts.ndim >= 3 and pts.shape[-1] == 3
norm_mode, dis_mode = norm_mode.split("_")
if norm_mode == "avg":
nan_pts_list, nnz_list = zip(
*[
invalid_to_zeros(pts1, valid1, ndim=3)
for pts1, valid1 in zip(pts_list, valid_list)
]
)
all_pts = torch.cat(nan_pts_list, dim=1)
if conf_list is not None:
nan_conf_list = [
invalid_to_zeros(conf1[..., None], valid1, ndim=3)[0]
for conf1, valid1 in zip(conf_list, valid_list)
]
all_conf = torch.cat(nan_conf_list, dim=1)[..., 0]
else:
all_conf = torch.ones_like(all_pts[..., 0])
all_dis = all_pts.norm(dim=-1)
if dis_mode == "dis":
pass # do nothing
elif dis_mode == "log1p":
all_dis = torch.log1p(all_dis)
elif dis_mode == "warp-log1p":
log_dis = torch.log1p(all_dis)
warp_factor = log_dis / all_dis.clip(min=1e-8)
H_W_list = [pts.shape[1:-1] for pts in pts_list]
pts_list = [
pts
* warp_factor[:, sum(H_W_list[:i]) : sum(H_W_list[: i + 1])].view(
-1, H, W, 1
)
for i, (pts, (H, W)) in enumerate(zip(pts_list, H_W_list))
]
all_dis = log_dis # this is their true distance afterwards
else:
raise ValueError(f"bad {dis_mode=}")
norm_factor = (all_conf * all_dis).sum(dim=1) / (all_conf.sum(dim=1) + 1e-8)
else:
nan_pts_list = [
invalid_to_nans(pts1, valid1, ndim=3)
for pts1, valid1 in zip(pts_list, valid_list)
]
all_pts = torch.cat(nan_pts_list, dim=1)
all_dis = all_pts.norm(dim=-1)
if norm_mode == "avg":
norm_factor = all_dis.nanmean(dim=1)
elif norm_mode == "median":
norm_factor = all_dis.nanmedian(dim=1).values.detach()
elif norm_mode == "sqrt":
norm_factor = all_dis.sqrt().nanmean(dim=1) ** 2
else:
raise ValueError(f"bad {norm_mode=}")
norm_factor = norm_factor.clip(min=1e-8)
while norm_factor.ndim < pts_list[0].ndim:
norm_factor.unsqueeze_(-1)
if ret_factor_only:
return norm_factor
res = [pts / norm_factor for pts in pts_list]
if ret_factor:
return res, norm_factor
return res
@torch.no_grad()
def get_joint_pointcloud_depth(z1, z2, valid_mask1, valid_mask2=None, quantile=0.5):
_z1 = invalid_to_nans(z1, valid_mask1).reshape(len(z1), -1)
_z2 = (
invalid_to_nans(z2, valid_mask2).reshape(len(z2), -1)
if z2 is not None
else None
)
_z = torch.cat((_z1, _z2), dim=-1) if z2 is not None else _z1
if quantile == 0.5:
shift_z = torch.nanmedian(_z, dim=-1).values
else:
shift_z = torch.nanquantile(_z, quantile, dim=-1)
return shift_z # (B,)
@torch.no_grad()
def get_group_pointcloud_depth(zs, valid_masks, quantile=0.5):
_zs = [
invalid_to_nans(z1, valid_mask1).reshape(len(z1), -1)
for z1, valid_mask1 in zip(zs, valid_masks)
]
_z = torch.cat(_zs, dim=-1)
if quantile == 0.5:
shift_z = torch.nanmedian(_z, dim=-1).values
else:
shift_z = torch.nanquantile(_z, quantile, dim=-1)
return shift_z # (B,)
@torch.no_grad()
def get_joint_pointcloud_center_scale(
pts1, pts2, valid_mask1=None, valid_mask2=None, z_only=False, center=True
):
_pts1 = invalid_to_nans(pts1, valid_mask1).reshape(len(pts1), -1, 3)
_pts2 = (
invalid_to_nans(pts2, valid_mask2).reshape(len(pts2), -1, 3)
if pts2 is not None
else None
)
_pts = torch.cat((_pts1, _pts2), dim=1) if pts2 is not None else _pts1
_center = torch.nanmedian(_pts, dim=1, keepdim=True).values # (B,1,3)
if z_only:
_center[..., :2] = 0 # do not center X and Y
_norm = ((_pts - _center) if center else _pts).norm(dim=-1)
scale = torch.nanmedian(_norm, dim=1).values
return _center[:, None, :, :], scale[:, None, None, None]
@torch.no_grad()
def get_group_pointcloud_center_scale(pts, valid_masks=None, z_only=False, center=True):
_pts = [
invalid_to_nans(pts1, valid_mask1).reshape(len(pts1), -1, 3)
for pts1, valid_mask1 in zip(pts, valid_masks)
]
_pts = torch.cat(_pts, dim=1)
_center = torch.nanmedian(_pts, dim=1, keepdim=True).values # (B,1,3)
if z_only:
_center[..., :2] = 0 # do not center X and Y
_norm = ((_pts - _center) if center else _pts).norm(dim=-1)
scale = torch.nanmedian(_norm, dim=1).values
return _center[:, None, :, :], scale[:, None, None, None]
def find_reciprocal_matches(P1, P2):
"""
returns 3 values:
1 - reciprocal_in_P2: a boolean array of size P2.shape[0], a "True" value indicates a match
2 - nn2_in_P1: a int array of size P2.shape[0], it contains the indexes of the closest points in P1
3 - reciprocal_in_P2.sum(): the number of matches
"""
tree1 = KDTree(P1)
tree2 = KDTree(P2)
_, nn1_in_P2 = tree2.query(P1, workers=8)
_, nn2_in_P1 = tree1.query(P2, workers=8)
reciprocal_in_P1 = nn2_in_P1[nn1_in_P2] == np.arange(len(nn1_in_P2))
reciprocal_in_P2 = nn1_in_P2[nn2_in_P1] == np.arange(len(nn2_in_P1))
assert reciprocal_in_P1.sum() == reciprocal_in_P2.sum()
return reciprocal_in_P2, nn2_in_P1, reciprocal_in_P2.sum()
def get_med_dist_between_poses(poses):
from scipy.spatial.distance import pdist
return np.median(pdist([to_numpy(p[:3, 3]) for p in poses]))
def weighted_procrustes(A, B, w, use_weights=True, eps=1e-16, return_T=False):
"""
X: torch tensor B x N x 3
Y: torch tensor B x N x 3
w: torch tensor B x N
"""
assert len(A) == len(B)
if use_weights:
W1 = torch.abs(w).sum(1, keepdim=True)
w_norm = (w / (W1 + eps)).unsqueeze(-1)
a_mean = (w_norm * A).sum(dim=1, keepdim=True)
b_mean = (w_norm * B).sum(dim=1, keepdim=True)
A_c = A - a_mean
B_c = B - b_mean
H = torch.einsum("bni,bnj->bij", A_c, w_norm * B_c)
else:
a_mean = A.mean(axis=1, keepdim=True)
b_mean = B.mean(axis=1, keepdim=True)
A_c = A - a_mean
B_c = B - b_mean
H = torch.einsum("bij,bik->bjk", A_c, B_c)
U, S, V = torch.svd(H) # U: B x 3 x 3, S: B x 3, V: B x 3 x 3
Z = torch.eye(3).unsqueeze(0).repeat(A.shape[0], 1, 1).to(A.device)
Z[:, -1, -1] = torch.sign(torch.linalg.det(U @ V.transpose(1, 2))) # B x 3 x 3
R = V @ Z @ U.transpose(1, 2) # B x 3 x 3
t = b_mean - torch.einsum("bij,bjk->bik", R, a_mean.transpose(-2, -1)).transpose(
-2, -1
)
if return_T:
T = torch.eye(4).unsqueeze(0).repeat(A.shape[0], 1, 1).to(A.device)
T[:, :3, :3] = R
T[:, :3, 3] = t.squeeze()
return T
return R, t.squeeze()
|