File size: 43,222 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
from copy import copy, deepcopy
import torch
import torch.nn as nn

from dust3r.inference import get_pred_pts3d, find_opt_scaling
from dust3r.utils.geometry import (
    inv,
    geotrf,
    normalize_pointcloud,
    normalize_pointcloud_group,
)
from dust3r.utils.geometry import (
    get_group_pointcloud_depth,
    get_group_pointcloud_center_scale,
    weighted_procrustes,
)
# from gsplat import rasterization
import numpy as np
import lpips
from dust3r.utils.camera import (
    pose_encoding_to_camera,
    camera_to_pose_encoding,
    relative_pose_absT_quatR,
)


def Sum(*losses_and_masks):
    loss, mask = losses_and_masks[0]
    if loss.ndim > 0:
        # we are actually returning the loss for every pixels
        return losses_and_masks
    else:
        # we are returning the global loss
        for loss2, mask2 in losses_and_masks[1:]:
            loss = loss + loss2
        return loss


class BaseCriterion(nn.Module):
    def __init__(self, reduction="mean"):
        super().__init__()
        self.reduction = reduction


class LLoss(BaseCriterion):
    """L-norm loss"""

    def forward(self, a, b):
        assert (
            a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3
        ), f"Bad shape = {a.shape}"
        dist = self.distance(a, b)
        if self.reduction == "none":
            return dist
        if self.reduction == "sum":
            return dist.sum()
        if self.reduction == "mean":
            return dist.mean() if dist.numel() > 0 else dist.new_zeros(())
        raise ValueError(f"bad {self.reduction=} mode")

    def distance(self, a, b):
        raise NotImplementedError()


class L21Loss(LLoss):
    """Euclidean distance between 3d points"""

    def distance(self, a, b):
        return torch.norm(a - b, dim=-1)  # normalized L2 distance


L21 = L21Loss()


class MSELoss(LLoss):
    def distance(self, a, b):
        return (a - b) ** 2


MSE = MSELoss()


class Criterion(nn.Module):
    def __init__(self, criterion=None):
        super().__init__()
        assert isinstance(
            criterion, BaseCriterion
        ), f"{criterion} is not a proper criterion!"
        self.criterion = copy(criterion)

    def get_name(self):
        return f"{type(self).__name__}({self.criterion})"

    def with_reduction(self, mode="none"):
        res = loss = deepcopy(self)
        while loss is not None:
            assert isinstance(loss, Criterion)
            loss.criterion.reduction = mode  # make it return the loss for each sample
            loss = loss._loss2  # we assume loss is a Multiloss
        return res


class MultiLoss(nn.Module):
    """Easily combinable losses (also keep track of individual loss values):
        loss = MyLoss1() + 0.1*MyLoss2()
    Usage:
        Inherit from this class and override get_name() and compute_loss()
    """

    def __init__(self):
        super().__init__()
        self._alpha = 1
        self._loss2 = None

    def compute_loss(self, *args, **kwargs):
        raise NotImplementedError()

    def get_name(self):
        raise NotImplementedError()

    def __mul__(self, alpha):
        assert isinstance(alpha, (int, float))
        res = copy(self)
        res._alpha = alpha
        return res

    __rmul__ = __mul__  # same

    def __add__(self, loss2):
        assert isinstance(loss2, MultiLoss)
        res = cur = copy(self)
        # find the end of the chain
        while cur._loss2 is not None:
            cur = cur._loss2
        cur._loss2 = loss2
        return res

    def __repr__(self):
        name = self.get_name()
        if self._alpha != 1:
            name = f"{self._alpha:g}*{name}"
        if self._loss2:
            name = f"{name} + {self._loss2}"
        return name

    def forward(self, *args, **kwargs):
        loss = self.compute_loss(*args, **kwargs)
        if isinstance(loss, tuple):
            loss, details = loss
        elif loss.ndim == 0:
            details = {self.get_name(): float(loss)}
        else:
            details = {}
        loss = loss * self._alpha

        if self._loss2:
            loss2, details2 = self._loss2(*args, **kwargs)
            loss = loss + loss2
            details |= details2

        return loss, details


class SSIM(nn.Module):
    """Layer to compute the SSIM loss between a pair of images"""

    def __init__(self):
        super(SSIM, self).__init__()
        self.mu_x_pool = nn.AvgPool2d(3, 1)
        self.mu_y_pool = nn.AvgPool2d(3, 1)
        self.sig_x_pool = nn.AvgPool2d(3, 1)
        self.sig_y_pool = nn.AvgPool2d(3, 1)
        self.sig_xy_pool = nn.AvgPool2d(3, 1)

        self.refl = nn.ReflectionPad2d(1)

        self.C1 = 0.01**2
        self.C2 = 0.03**2

    def forward(self, x, y):
        x = self.refl(x)
        y = self.refl(y)

        mu_x = self.mu_x_pool(x)
        mu_y = self.mu_y_pool(y)

        sigma_x = self.sig_x_pool(x**2) - mu_x**2
        sigma_y = self.sig_y_pool(y**2) - mu_y**2
        sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y

        SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
        SSIM_d = (mu_x**2 + mu_y**2 + self.C1) * (sigma_x + sigma_y + self.C2)

        return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)


class RGBLoss(Criterion, MultiLoss):
    def __init__(self, criterion):
        super().__init__(criterion)
        self.ssim = SSIM()

    def img_loss(self, a, b):
        return self.criterion(a, b)

    def compute_loss(self, gts, preds, **kw):
        gt_rgbs = [gt["img"].permute(0, 2, 3, 1) for gt in gts]
        pred_rgbs = [pred["rgb"] for pred in preds]
        ls = [
            self.img_loss(pred_rgb, gt_rgb)
            for pred_rgb, gt_rgb in zip(pred_rgbs, gt_rgbs)
        ]
        details = {}
        self_name = type(self).__name__
        for i, l in enumerate(ls):
            details[self_name + f"_rgb/{i+1}"] = float(l)
            details[f"pred_rgb_{i+1}"] = pred_rgbs[i]
        rgb_loss = sum(ls) / len(ls)
        return rgb_loss, details


class DepthScaleShiftInvLoss(BaseCriterion):
    """scale and shift invariant loss"""

    def __init__(self, reduction="none"):
        super().__init__(reduction)

    def forward(self, pred, gt, mask):
        assert pred.shape == gt.shape and pred.ndim == 3, f"Bad shape = {pred.shape}"
        dist = self.distance(pred, gt, mask)
        # assert dist.ndim == a.ndim - 1  # one dimension less
        if self.reduction == "none":
            return dist
        if self.reduction == "sum":
            return dist.sum()
        if self.reduction == "mean":
            return dist.mean() if dist.numel() > 0 else dist.new_zeros(())
        raise ValueError(f"bad {self.reduction=} mode")

    def normalize(self, x, mask):
        x_valid = x[mask]
        splits = mask.sum(dim=(1, 2)).tolist()
        x_valid_list = torch.split(x_valid, splits)
        shift = [x.mean() for x in x_valid_list]
        x_valid_centered = [x - m for x, m in zip(x_valid_list, shift)]
        scale = [x.abs().mean() for x in x_valid_centered]
        scale = torch.stack(scale)
        shift = torch.stack(shift)
        x = (x - shift.view(-1, 1, 1)) / scale.view(-1, 1, 1).clamp(min=1e-6)
        return x

    def distance(self, pred, gt, mask):
        pred = self.normalize(pred, mask)
        gt = self.normalize(gt, mask)
        return torch.abs((pred - gt)[mask])


class ScaleInvLoss(BaseCriterion):
    """scale invariant loss"""

    def __init__(self, reduction="none"):
        super().__init__(reduction)

    def forward(self, pred, gt, mask):
        assert pred.shape == gt.shape and pred.ndim == 4, f"Bad shape = {pred.shape}"
        dist = self.distance(pred, gt, mask)
        # assert dist.ndim == a.ndim - 1  # one dimension less
        if self.reduction == "none":
            return dist
        if self.reduction == "sum":
            return dist.sum()
        if self.reduction == "mean":
            return dist.mean() if dist.numel() > 0 else dist.new_zeros(())
        raise ValueError(f"bad {self.reduction=} mode")

    def distance(self, pred, gt, mask):
        pred_norm_factor = (torch.norm(pred, dim=-1) * mask).sum(dim=(1, 2)) / mask.sum(
            dim=(1, 2)
        ).clamp(min=1e-6)
        gt_norm_factor = (torch.norm(gt, dim=-1) * mask).sum(dim=(1, 2)) / mask.sum(
            dim=(1, 2)
        ).clamp(min=1e-6)
        pred = pred / pred_norm_factor.view(-1, 1, 1, 1).clamp(min=1e-6)
        gt = gt / gt_norm_factor.view(-1, 1, 1, 1).clamp(min=1e-6)
        return torch.norm(pred - gt, dim=-1)[mask]


class Regr3DPose(Criterion, MultiLoss):
    """Ensure that all 3D points are correct.
    Asymmetric loss: view1 is supposed to be the anchor.

    P1 = RT1 @ D1
    P2 = RT2 @ D2
    loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1)
    loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2)
          = (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2)
    """

    def __init__(
        self,
        criterion,
        norm_mode="?avg_dis",
        gt_scale=False,
        sky_loss_value=2,
        max_metric_scale=False,
    ):
        super().__init__(criterion)
        if norm_mode.startswith("?"):
            # do no norm pts from metric scale datasets
            self.norm_all = False
            self.norm_mode = norm_mode[1:]
        else:
            self.norm_all = True
            self.norm_mode = norm_mode
        self.gt_scale = gt_scale

        self.sky_loss_value = sky_loss_value
        self.max_metric_scale = max_metric_scale

    def get_norm_factor_point_cloud(
        self, pts_self, pts_cross, valids, conf_self, conf_cross, norm_self_only=False
    ):
        if norm_self_only:
            norm_factor = normalize_pointcloud_group(
                pts_self, self.norm_mode, valids, conf_self, ret_factor_only=True
            )
        else:
            pts = [torch.cat([x, y], dim=2) for x, y in zip(pts_self, pts_cross)]
            valids = [torch.cat([x, x], dim=2) for x in valids]
            confs = [torch.cat([x, y], dim=2) for x, y in zip(conf_self, conf_cross)]
            norm_factor = normalize_pointcloud_group(
                pts, self.norm_mode, valids, confs, ret_factor_only=True
            )
        return norm_factor

    def get_norm_factor_poses(self, gt_trans, pr_trans, not_metric_mask):

        if self.norm_mode and not self.gt_scale:
            gt_trans = [x[:, None, None, :].clone() for x in gt_trans]
            valids = [torch.ones_like(x[..., 0], dtype=torch.bool) for x in gt_trans]
            norm_factor_gt = (
                normalize_pointcloud_group(
                    gt_trans,
                    self.norm_mode,
                    valids,
                    ret_factor_only=True,
                )
                .squeeze(-1)
                .squeeze(-1)
            )
        else:
            norm_factor_gt = torch.ones(
                len(gt_trans), dtype=gt_trans[0].dtype, device=gt_trans[0].device
            )

        norm_factor_pr = norm_factor_gt.clone()
        if self.norm_mode and not_metric_mask.sum() > 0 and not self.gt_scale:
            pr_trans_not_metric = [
                x[not_metric_mask][:, None, None, :].clone() for x in pr_trans
            ]
            valids = [
                torch.ones_like(x[..., 0], dtype=torch.bool)
                for x in pr_trans_not_metric
            ]
            norm_factor_pr_not_metric = (
                normalize_pointcloud_group(
                    pr_trans_not_metric,
                    self.norm_mode,
                    valids,
                    ret_factor_only=True,
                )
                .squeeze(-1)
                .squeeze(-1)
            )
            norm_factor_pr[not_metric_mask] = norm_factor_pr_not_metric
        return norm_factor_gt, norm_factor_pr

    def get_all_pts3d(
        self,
        gts,
        preds,
        dist_clip=None,
        norm_self_only=False,
        norm_pose_separately=False,
        eps=1e-3,
        camera1=None,
    ):
        # everything is normalized w.r.t. camera of view1
        in_camera1 = inv(gts[0]["camera_pose"]) if camera1 is None else inv(camera1)
        gt_pts_self = [geotrf(inv(gt["camera_pose"]), gt["pts3d"]) for gt in gts]
        gt_pts_cross = [geotrf(in_camera1, gt["pts3d"]) for gt in gts]
        valids = [gt["valid_mask"].clone() for gt in gts]
        camera_only = gts[0]["camera_only"]

        if dist_clip is not None:
            # points that are too far-away == invalid
            dis = [gt_pt.norm(dim=-1) for gt_pt in gt_pts_cross]
            valids = [valid & (dis <= dist_clip) for valid, dis in zip(valids, dis)]

        pr_pts_self = [pred["pts3d_in_self_view"] for pred in preds]
        pr_pts_cross = [pred["pts3d_in_other_view"] for pred in preds]
        conf_self = [torch.log(pred["conf_self"]).detach().clip(eps) for pred in preds]
        conf_cross = [torch.log(pred["conf"]).detach().clip(eps) for pred in preds]

        if not self.norm_all:
            if self.max_metric_scale:
                B = valids[0].shape[0]
                dist = [
                    torch.where(valid, torch.linalg.norm(gt_pt_cross, dim=-1), 0).view(
                        B, -1
                    )
                    for valid, gt_pt_cross in zip(valids, gt_pts_cross)
                ]
                for d in dist:
                    gts[0]["is_metric"] = gts[0]["is_metric_scale"] & (
                        d.max(dim=-1).values < self.max_metric_scale
                    )
            not_metric_mask = ~gts[0]["is_metric"]
        else:
            not_metric_mask = torch.ones_like(gts[0]["is_metric"])

        # normalize 3d points
        # compute the scale using only the self view point maps
        if self.norm_mode and not self.gt_scale:
            norm_factor_gt = self.get_norm_factor_point_cloud(
                gt_pts_self,
                gt_pts_cross,
                valids,
                conf_self,
                conf_cross,
                norm_self_only=norm_self_only,
            )
        else:
            norm_factor_gt = torch.ones_like(
                preds[0]["pts3d_in_other_view"][:, :1, :1, :1]
            )

        norm_factor_pr = norm_factor_gt.clone()
        if self.norm_mode and not_metric_mask.sum() > 0 and not self.gt_scale:
            norm_factor_pr_not_metric = self.get_norm_factor_point_cloud(
                [pr_pt_self[not_metric_mask] for pr_pt_self in pr_pts_self],
                [pr_pt_cross[not_metric_mask] for pr_pt_cross in pr_pts_cross],
                [valid[not_metric_mask] for valid in valids],
                [conf[not_metric_mask] for conf in conf_self],
                [conf[not_metric_mask] for conf in conf_cross],
                norm_self_only=norm_self_only,
            )
            norm_factor_pr[not_metric_mask] = norm_factor_pr_not_metric

        norm_factor_gt = norm_factor_gt.clip(eps)
        norm_factor_pr = norm_factor_pr.clip(eps)

        gt_pts_self = [pts / norm_factor_gt for pts in gt_pts_self]
        gt_pts_cross = [pts / norm_factor_gt for pts in gt_pts_cross]
        pr_pts_self = [pts / norm_factor_pr for pts in pr_pts_self]
        pr_pts_cross = [pts / norm_factor_pr for pts in pr_pts_cross]

        # [(Bx3, BX4), (BX3, BX4), ...], 3 for translation, 4 for quaternion
        gt_poses = [
            camera_to_pose_encoding(in_camera1 @ gt["camera_pose"]).clone()
            for gt in gts
        ]
        pr_poses = [pred["camera_pose"].clone() for pred in preds]
        pose_norm_factor_gt = norm_factor_gt.clone().squeeze(2, 3)
        pose_norm_factor_pr = norm_factor_pr.clone().squeeze(2, 3)

        if norm_pose_separately:
            gt_trans = [gt[:, :3] for gt in gt_poses]
            pr_trans = [pr[:, :3] for pr in pr_poses]
            pose_norm_factor_gt, pose_norm_factor_pr = self.get_norm_factor_poses(
                gt_trans, pr_trans, not_metric_mask
            )
        elif any(camera_only):
            gt_trans = [gt[:, :3] for gt in gt_poses]
            pr_trans = [pr[:, :3] for pr in pr_poses]
            pose_only_norm_factor_gt, pose_only_norm_factor_pr = (
                self.get_norm_factor_poses(gt_trans, pr_trans, not_metric_mask)
            )
            pose_norm_factor_gt = torch.where(
                camera_only[:, None], pose_only_norm_factor_gt, pose_norm_factor_gt
            )
            pose_norm_factor_pr = torch.where(
                camera_only[:, None], pose_only_norm_factor_pr, pose_norm_factor_pr
            )

        gt_poses = [
            (gt[:, :3] / pose_norm_factor_gt.clip(eps), gt[:, 3:]) for gt in gt_poses
        ]
        pr_poses = [
            (pr[:, :3] / pose_norm_factor_pr.clip(eps), pr[:, 3:]) for pr in pr_poses
        ]
        pose_masks = (pose_norm_factor_gt.squeeze() > eps) & (
            pose_norm_factor_pr.squeeze() > eps
        )

        if any(camera_only):
            # this is equal to a loss for camera intrinsics
            gt_pts_self = [
                torch.where(
                    camera_only[:, None, None, None],
                    (gt / gt[..., -1:].clip(1e-6)).clip(-2, 2),
                    gt,
                )
                for gt in gt_pts_self
            ]
            pr_pts_self = [
                torch.where(
                    camera_only[:, None, None, None],
                    (pr / pr[..., -1:].clip(1e-6)).clip(-2, 2),
                    pr,
                )
                for pr in pr_pts_self
            ]
            # # do not add cross view loss when there is only camera supervision

        skys = [gt["sky_mask"] & ~valid for gt, valid in zip(gts, valids)]
        return (
            gt_pts_self,
            gt_pts_cross,
            pr_pts_self,
            pr_pts_cross,
            gt_poses,
            pr_poses,
            valids,
            skys,
            pose_masks,
            {},
        )

    def get_all_pts3d_with_scale_loss(
        self,
        gts,
        preds,
        dist_clip=None,
        norm_self_only=False,
        norm_pose_separately=False,
        eps=1e-3,
    ):
        # everything is normalized w.r.t. camera of view1
        in_camera1 = inv(gts[0]["camera_pose"])
        gt_pts_self = [geotrf(inv(gt["camera_pose"]), gt["pts3d"]) for gt in gts]
        gt_pts_cross = [geotrf(in_camera1, gt["pts3d"]) for gt in gts]
        valids = [gt["valid_mask"].clone() for gt in gts]
        camera_only = gts[0]["camera_only"]

        if dist_clip is not None:
            # points that are too far-away == invalid
            dis = [gt_pt.norm(dim=-1) for gt_pt in gt_pts_cross]
            valids = [valid & (dis <= dist_clip) for valid, dis in zip(valids, dis)]

        pr_pts_self = [pred["pts3d_in_self_view"] for pred in preds]
        pr_pts_cross = [pred["pts3d_in_other_view"] for pred in preds]
        conf_self = [torch.log(pred["conf_self"]).detach().clip(eps) for pred in preds]
        conf_cross = [torch.log(pred["conf"]).detach().clip(eps) for pred in preds]

        if not self.norm_all:
            if self.max_metric_scale:
                B = valids[0].shape[0]
                dist = [
                    torch.where(valid, torch.linalg.norm(gt_pt_cross, dim=-1), 0).view(
                        B, -1
                    )
                    for valid, gt_pt_cross in zip(valids, gt_pts_cross)
                ]
                for d in dist:
                    gts[0]["is_metric"] = gts[0]["is_metric_scale"] & (
                        d.max(dim=-1).values < self.max_metric_scale
                    )
            not_metric_mask = ~gts[0]["is_metric"]
        else:
            not_metric_mask = torch.ones_like(gts[0]["is_metric"])

        # normalize 3d points
        # compute the scale using only the self view point maps
        if self.norm_mode and not self.gt_scale:
            norm_factor_gt = self.get_norm_factor_point_cloud(
                gt_pts_self[:1],
                gt_pts_cross[:1],
                valids[:1],
                conf_self[:1],
                conf_cross[:1],
                norm_self_only=norm_self_only,
            )
        else:
            norm_factor_gt = torch.ones_like(
                preds[0]["pts3d_in_other_view"][:, :1, :1, :1]
            )

        if self.norm_mode:
            norm_factor_pr = self.get_norm_factor_point_cloud(
                pr_pts_self[:1],
                pr_pts_cross[:1],
                valids[:1],
                conf_self[:1],
                conf_cross[:1],
                norm_self_only=norm_self_only,
            )
        else:
            raise NotImplementedError
        # only add loss to metric scale norm factor
        if (~not_metric_mask).sum() > 0:
            pts_scale_loss = torch.abs(
                norm_factor_pr[~not_metric_mask] - norm_factor_gt[~not_metric_mask]
            ).mean()
        else:
            pts_scale_loss = 0.0

        norm_factor_gt = norm_factor_gt.clip(eps)
        norm_factor_pr = norm_factor_pr.clip(eps)

        gt_pts_self = [pts / norm_factor_gt for pts in gt_pts_self]
        gt_pts_cross = [pts / norm_factor_gt for pts in gt_pts_cross]
        pr_pts_self = [pts / norm_factor_pr for pts in pr_pts_self]
        pr_pts_cross = [pts / norm_factor_pr for pts in pr_pts_cross]

        # [(Bx3, BX4), (BX3, BX4), ...], 3 for translation, 4 for quaternion
        gt_poses = [
            camera_to_pose_encoding(in_camera1 @ gt["camera_pose"]).clone()
            for gt in gts
        ]
        pr_poses = [pred["camera_pose"].clone() for pred in preds]
        pose_norm_factor_gt = norm_factor_gt.clone().squeeze(2, 3)
        pose_norm_factor_pr = norm_factor_pr.clone().squeeze(2, 3)

        if norm_pose_separately:
            gt_trans = [gt[:, :3] for gt in gt_poses][:1]
            pr_trans = [pr[:, :3] for pr in pr_poses][:1]
            pose_norm_factor_gt, pose_norm_factor_pr = self.get_norm_factor_poses(
                gt_trans, pr_trans, torch.ones_like(not_metric_mask)
            )
        elif any(camera_only):
            gt_trans = [gt[:, :3] for gt in gt_poses][:1]
            pr_trans = [pr[:, :3] for pr in pr_poses][:1]
            pose_only_norm_factor_gt, pose_only_norm_factor_pr = (
                self.get_norm_factor_poses(
                    gt_trans, pr_trans, torch.ones_like(not_metric_mask)
                )
            )
            pose_norm_factor_gt = torch.where(
                camera_only[:, None], pose_only_norm_factor_gt, pose_norm_factor_gt
            )
            pose_norm_factor_pr = torch.where(
                camera_only[:, None], pose_only_norm_factor_pr, pose_norm_factor_pr
            )
        # only add loss to metric scale norm factor
        if (~not_metric_mask).sum() > 0:
            pose_scale_loss = torch.abs(
                pose_norm_factor_pr[~not_metric_mask]
                - pose_norm_factor_gt[~not_metric_mask]
            ).mean()
        else:
            pose_scale_loss = 0.0
        gt_poses = [
            (gt[:, :3] / pose_norm_factor_gt.clip(eps), gt[:, 3:]) for gt in gt_poses
        ]
        pr_poses = [
            (pr[:, :3] / pose_norm_factor_pr.clip(eps), pr[:, 3:]) for pr in pr_poses
        ]

        pose_masks = (pose_norm_factor_gt.squeeze() > eps) & (
            pose_norm_factor_pr.squeeze() > eps
        )

        if any(camera_only):
            # this is equal to a loss for camera intrinsics
            gt_pts_self = [
                torch.where(
                    camera_only[:, None, None, None],
                    (gt / gt[..., -1:].clip(1e-6)).clip(-2, 2),
                    gt,
                )
                for gt in gt_pts_self
            ]
            pr_pts_self = [
                torch.where(
                    camera_only[:, None, None, None],
                    (pr / pr[..., -1:].clip(1e-6)).clip(-2, 2),
                    pr,
                )
                for pr in pr_pts_self
            ]
            # # do not add cross view loss when there is only camera supervision

        skys = [gt["sky_mask"] & ~valid for gt, valid in zip(gts, valids)]
        return (
            gt_pts_self,
            gt_pts_cross,
            pr_pts_self,
            pr_pts_cross,
            gt_poses,
            pr_poses,
            valids,
            skys,
            pose_masks,
            {"scale_loss": pose_scale_loss + pts_scale_loss},
        )

    def compute_relative_pose_loss(
        self, gt_trans, gt_quats, pr_trans, pr_quats, masks=None
    ):
        if masks is None:
            masks = torch.ones(len(gt_trans), dtype=torch.bool, device=gt_trans.device)
        gt_trans_matrix1 = gt_trans[:, :, None, :].repeat(1, 1, gt_trans.shape[1], 1)[
            masks
        ]
        gt_trans_matrix2 = gt_trans[:, None, :, :].repeat(1, gt_trans.shape[1], 1, 1)[
            masks
        ]
        gt_quats_matrix1 = gt_quats[:, :, None, :].repeat(1, 1, gt_quats.shape[1], 1)[
            masks
        ]
        gt_quats_matrix2 = gt_quats[:, None, :, :].repeat(1, gt_quats.shape[1], 1, 1)[
            masks
        ]
        pr_trans_matrix1 = pr_trans[:, :, None, :].repeat(1, 1, pr_trans.shape[1], 1)[
            masks
        ]
        pr_trans_matrix2 = pr_trans[:, None, :, :].repeat(1, pr_trans.shape[1], 1, 1)[
            masks
        ]
        pr_quats_matrix1 = pr_quats[:, :, None, :].repeat(1, 1, pr_quats.shape[1], 1)[
            masks
        ]
        pr_quats_matrix2 = pr_quats[:, None, :, :].repeat(1, pr_quats.shape[1], 1, 1)[
            masks
        ]

        gt_rel_trans, gt_rel_quats = relative_pose_absT_quatR(
            gt_trans_matrix1, gt_quats_matrix1, gt_trans_matrix2, gt_quats_matrix2
        )
        pr_rel_trans, pr_rel_quats = relative_pose_absT_quatR(
            pr_trans_matrix1, pr_quats_matrix1, pr_trans_matrix2, pr_quats_matrix2
        )
        rel_trans_err = torch.norm(gt_rel_trans - pr_rel_trans, dim=-1)
        rel_quats_err = torch.norm(gt_rel_quats - pr_rel_quats, dim=-1)
        return rel_trans_err.mean() + rel_quats_err.mean()

    def compute_pose_loss(self, gt_poses, pred_poses, masks=None):
        """
        gt_pose: list of (Bx3, Bx4)
        pred_pose: list of (Bx3, Bx4)
        masks: None, or B
        """
        gt_trans = torch.stack([gt[0] for gt in gt_poses], dim=1)  # BxNx3
        gt_quats = torch.stack([gt[1] for gt in gt_poses], dim=1)  # BXNX3
        pred_trans = torch.stack([pr[0] for pr in pred_poses], dim=1)  # BxNx4
        pred_quats = torch.stack([pr[1] for pr in pred_poses], dim=1)  # BxNx4
        if masks == None:
            pose_loss = (
                torch.norm(pred_trans - gt_trans, dim=-1).mean()
                + torch.norm(pred_quats - gt_quats, dim=-1).mean()
            )
        else:
            if not any(masks):
                return torch.tensor(0.0)
            pose_loss = (
                torch.norm(pred_trans - gt_trans, dim=-1)[masks].mean()
                + torch.norm(pred_quats - gt_quats, dim=-1)[masks].mean()
            )

        return pose_loss

    def compute_loss(self, gts, preds, **kw):
        (
            gt_pts_self,
            gt_pts_cross,
            pred_pts_self,
            pred_pts_cross,
            gt_poses,
            pr_poses,
            masks,
            skys,
            pose_masks,
            monitoring,
        ) = self.get_all_pts3d(gts, preds, **kw)

        if self.sky_loss_value > 0:
            assert (
                self.criterion.reduction == "none"
            ), "sky_loss_value should be 0 if no conf loss"
            masks = [mask | sky for mask, sky in zip(masks, skys)]

        # self view loss and details
        if "Quantile" in self.criterion.__class__.__name__:
            # masks are overwritten taking into account self view losses
            ls_self, masks = self.criterion(
                pred_pts_self, gt_pts_self, masks, gts[0]["quantile"]
            )
        else:
            ls_self = [
                self.criterion(pred_pt[mask], gt_pt[mask])
                for pred_pt, gt_pt, mask in zip(pred_pts_self, gt_pts_self, masks)
            ]

        if self.sky_loss_value > 0:
            assert (
                self.criterion.reduction == "none"
            ), "sky_loss_value should be 0 if no conf loss"
            for i, l in enumerate(ls_self):
                ls_self[i] = torch.where(skys[i][masks[i]], self.sky_loss_value, l)

        self_name = type(self).__name__

        details = {}
        for i in range(len(ls_self)):
            details[self_name + f"_self_pts3d/{i+1}"] = float(ls_self[i].mean())
            details[f"gt_img{i+1}"] = gts[i]["img"].permute(0, 2, 3, 1).detach()
            details[f"self_conf_{i+1}"] = preds[i]["conf_self"].detach()
            details[f"valid_mask_{i+1}"] = masks[i].detach()

            if "img_mask" in gts[i] and "ray_mask" in gts[i]:
                details[f"img_mask_{i+1}"] = gts[i]["img_mask"].detach()
                details[f"ray_mask_{i+1}"] = gts[i]["ray_mask"].detach()

            if "desc" in preds[i]:
                details[f"desc_{i+1}"] = preds[i]["desc"].detach()

        # cross view loss and details
        camera_only = gts[0]["camera_only"]
        pred_pts_cross = [pred_pts[~camera_only] for pred_pts in pred_pts_cross]
        gt_pts_cross = [gt_pts[~camera_only] for gt_pts in gt_pts_cross]
        masks_cross = [mask[~camera_only] for mask in masks]
        skys_cross = [sky[~camera_only] for sky in skys]

        if "Quantile" in self.criterion.__class__.__name__:
            # quantile masks have already been determined by self view losses, here pass in None as quantile
            ls_cross, _ = self.criterion(
                pred_pts_cross, gt_pts_cross, masks_cross, None
            )
        else:
            ls_cross = [
                self.criterion(pred_pt[mask], gt_pt[mask])
                for pred_pt, gt_pt, mask in zip(
                    pred_pts_cross, gt_pts_cross, masks_cross
                )
            ]

        if self.sky_loss_value > 0:
            assert (
                self.criterion.reduction == "none"
            ), "sky_loss_value should be 0 if no conf loss"
            for i, l in enumerate(ls_cross):
                ls_cross[i] = torch.where(
                    skys_cross[i][masks_cross[i]], self.sky_loss_value, l
                )

        for i in range(len(ls_cross)):
            details[self_name + f"_pts3d/{i+1}"] = float(
                ls_cross[i].mean() if ls_cross[i].numel() > 0 else 0
            )
            details[f"conf_{i+1}"] = preds[i]["conf"].detach()

        ls = ls_self + ls_cross
        masks = masks + masks_cross
        details["is_self"] = [True] * len(ls_self) + [False] * len(ls_cross)
        details["img_ids"] = (
            np.arange(len(ls_self)).tolist() + np.arange(len(ls_cross)).tolist()
        )
        details["pose_loss"] = self.compute_pose_loss(gt_poses, pr_poses, pose_masks)

        return Sum(*list(zip(ls, masks))), (details | monitoring)


class Regr3DPoseBatchList(Regr3DPose):
    """Ensure that all 3D points are correct.
    Asymmetric loss: view1 is supposed to be the anchor.

    P1 = RT1 @ D1
    P2 = RT2 @ D2
    loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1)
    loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2)
          = (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2)
    """

    def __init__(
        self,
        criterion,
        norm_mode="?avg_dis",
        gt_scale=False,
        sky_loss_value=2,
        max_metric_scale=False,
    ):
        super().__init__(
            criterion, norm_mode, gt_scale, sky_loss_value, max_metric_scale
        )
        self.depth_only_criterion = DepthScaleShiftInvLoss()
        self.single_view_criterion = ScaleInvLoss()

    def reorg(self, ls_b, masks_b):
        ids_split = [mask.sum(dim=(1, 2)) for mask in masks_b]
        ls = [[] for _ in range(len(masks_b[0]))]
        for i in range(len(ls_b)):
            ls_splitted_i = torch.split(ls_b[i], ids_split[i].tolist())
            for j in range(len(masks_b[0])):
                ls[j].append(ls_splitted_i[j])
        ls = [torch.cat(l) for l in ls]
        return ls

    def compute_loss(self, gts, preds, **kw):
        (
            gt_pts_self,
            gt_pts_cross,
            pred_pts_self,
            pred_pts_cross,
            gt_poses,
            pr_poses,
            masks,
            skys,
            pose_masks,
            monitoring,
        ) = self.get_all_pts3d(gts, preds, **kw)

        if self.sky_loss_value > 0:
            assert (
                self.criterion.reduction == "none"
            ), "sky_loss_value should be 0 if no conf loss"
            masks = [mask | sky for mask, sky in zip(masks, skys)]

        camera_only = gts[0]["camera_only"]
        depth_only = gts[0]["depth_only"]
        single_view = gts[0]["single_view"]
        is_metric = gts[0]["is_metric"]

        # self view loss and details
        if "Quantile" in self.criterion.__class__.__name__:
            raise NotImplementedError
        else:
            # list [(B, h, w, 3)] x num_views -> list [num_views, h, w, 3] x B
            gt_pts_self_b = torch.unbind(torch.stack(gt_pts_self, dim=1), dim=0)
            pred_pts_self_b = torch.unbind(torch.stack(pred_pts_self, dim=1), dim=0)
            masks_b = torch.unbind(torch.stack(masks, dim=1), dim=0)
            ls_self_b = []
            for i in range(len(gt_pts_self_b)):
                if depth_only[
                    i
                ]:  # if only have relative depth, no intrinsics or anything
                    ls_self_b.append(
                        self.depth_only_criterion(
                            pred_pts_self_b[i][..., -1],
                            gt_pts_self_b[i][..., -1],
                            masks_b[i],
                        )
                    )
                elif (
                    single_view[i] and not is_metric[i]
                ):  # if single view, with intrinsics and not metric
                    ls_self_b.append(
                        self.single_view_criterion(
                            pred_pts_self_b[i], gt_pts_self_b[i], masks_b[i]
                        )
                    )
                else:  # if multiple view, or metric single view
                    ls_self_b.append(
                        self.criterion(
                            pred_pts_self_b[i][masks_b[i]], gt_pts_self_b[i][masks_b[i]]
                        )
                    )
            ls_self = self.reorg(ls_self_b, masks_b)

        if self.sky_loss_value > 0:
            assert (
                self.criterion.reduction == "none"
            ), "sky_loss_value should be 0 if no conf loss"
            for i, l in enumerate(ls_self):
                ls_self[i] = torch.where(skys[i][masks[i]], self.sky_loss_value, l)

        self_name = type(self).__name__

        details = {}
        for i in range(len(ls_self)):
            details[self_name + f"_self_pts3d/{i+1}"] = float(ls_self[i].mean())
            details[f"self_conf_{i+1}"] = preds[i]["conf_self"].detach()
            details[f"gt_img{i+1}"] = gts[i]["img"].permute(0, 2, 3, 1).detach()
            details[f"valid_mask_{i+1}"] = masks[i].detach()

            if "img_mask" in gts[i] and "ray_mask" in gts[i]:
                details[f"img_mask_{i+1}"] = gts[i]["img_mask"].detach()
                details[f"ray_mask_{i+1}"] = gts[i]["ray_mask"].detach()

            if "desc" in preds[i]:
                details[f"desc_{i+1}"] = preds[i]["desc"].detach()

        if "Quantile" in self.criterion.__class__.__name__:
            # quantile masks have already been determined by self view losses, here pass in None as quantile
            raise NotImplementedError
        else:
            gt_pts_cross_b = torch.unbind(
                torch.stack(gt_pts_cross, dim=1)[~camera_only], dim=0
            )
            pred_pts_cross_b = torch.unbind(
                torch.stack(pred_pts_cross, dim=1)[~camera_only], dim=0
            )
            masks_cross_b = torch.unbind(torch.stack(masks, dim=1)[~camera_only], dim=0)
            ls_cross_b = []
            for i in range(len(gt_pts_cross_b)):
                if depth_only[~camera_only][i]:
                    ls_cross_b.append(
                        self.depth_only_criterion(
                            pred_pts_cross_b[i][..., -1],
                            gt_pts_cross_b[i][..., -1],
                            masks_cross_b[i],
                        )
                    )
                elif single_view[~camera_only][i] and not is_metric[~camera_only][i]:
                    ls_cross_b.append(
                        self.single_view_criterion(
                            pred_pts_cross_b[i], gt_pts_cross_b[i], masks_cross_b[i]
                        )
                    )
                else:
                    ls_cross_b.append(
                        self.criterion(
                            pred_pts_cross_b[i][masks_cross_b[i]],
                            gt_pts_cross_b[i][masks_cross_b[i]],
                        )
                    )
            ls_cross = self.reorg(ls_cross_b, masks_cross_b)

        if self.sky_loss_value > 0:
            assert (
                self.criterion.reduction == "none"
            ), "sky_loss_value should be 0 if no conf loss"
            masks_cross = [mask[~camera_only] for mask in masks]
            skys_cross = [sky[~camera_only] for sky in skys]
            for i, l in enumerate(ls_cross):
                ls_cross[i] = torch.where(
                    skys_cross[i][masks_cross[i]], self.sky_loss_value, l
                )

        for i in range(len(ls_cross)):
            details[self_name + f"_pts3d/{i+1}"] = float(
                ls_cross[i].mean() if ls_cross[i].numel() > 0 else 0
            )
            details[f"conf_{i+1}"] = preds[i]["conf"].detach()

        ls = ls_self + ls_cross
        masks = masks + masks_cross
        details["is_self"] = [True] * len(ls_self) + [False] * len(ls_cross)
        details["img_ids"] = (
            np.arange(len(ls_self)).tolist() + np.arange(len(ls_cross)).tolist()
        )
        pose_masks = pose_masks * gts[i]["img_mask"]
        details["pose_loss"] = self.compute_pose_loss(gt_poses, pr_poses, pose_masks)

        return Sum(*list(zip(ls, masks))), (details | monitoring)


class ConfLoss(MultiLoss):
    """Weighted regression by learned confidence.
        Assuming the input pixel_loss is a pixel-level regression loss.

    Principle:
        high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10)
        low  confidence means low  conf = 10  ==> conf_loss = x * 10 - alpha*log(10)

        alpha: hyperparameter
    """

    def __init__(self, pixel_loss, alpha=1):
        super().__init__()
        assert alpha > 0
        self.alpha = alpha
        self.pixel_loss = pixel_loss.with_reduction("none")

    def get_name(self):
        return f"ConfLoss({self.pixel_loss})"

    def get_conf_log(self, x):
        return x, torch.log(x)

    def compute_loss(self, gts, preds, **kw):
        # compute per-pixel loss
        losses_and_masks, details = self.pixel_loss(gts, preds, **kw)
        if "is_self" in details and "img_ids" in details:
            is_self = details["is_self"]
            img_ids = details["img_ids"]
        else:
            is_self = [False] * len(losses_and_masks)
            img_ids = list(range(len(losses_and_masks)))

        # weight by confidence
        conf_losses = []

        for i in range(len(losses_and_masks)):
            pred = preds[img_ids[i]]
            conf_key = "conf_self" if is_self[i] else "conf"
            if not is_self[i]:
                camera_only = gts[0]["camera_only"]
                conf, log_conf = self.get_conf_log(
                    pred[conf_key][~camera_only][losses_and_masks[i][1]]
                )
            else:
                conf, log_conf = self.get_conf_log(
                    pred[conf_key][losses_and_masks[i][1]]
                )

            conf_loss = losses_and_masks[i][0] * conf - self.alpha * log_conf
            conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0
            conf_losses.append(conf_loss)

            if is_self[i]:
                details[self.get_name() + f"_conf_loss_self/{img_ids[i]+1}"] = float(
                    conf_loss
                )
            else:
                details[self.get_name() + f"_conf_loss/{img_ids[i]+1}"] = float(
                    conf_loss
                )

        details.pop("is_self", None)
        details.pop("img_ids", None)

        final_loss = sum(conf_losses) / len(conf_losses) * 2.0
        if "pose_loss" in details:
            final_loss = (
                final_loss + details["pose_loss"].clip(max=0.3) * 5.0
            )  # , details
        if "scale_loss" in details:
            final_loss = final_loss + details["scale_loss"]
        return final_loss, details


class Regr3DPose_ScaleInv(Regr3DPose):
    """Same than Regr3D but invariant to depth shift.
    if gt_scale == True: enforce the prediction to take the same scale than GT
    """

    def get_all_pts3d(self, gts, preds):
        # compute depth-normalized points
        (
            gt_pts_self,
            gt_pts_cross,
            pr_pts_self,
            pr_pts_cross,
            gt_poses,
            pr_poses,
            masks,
            skys,
            pose_masks,
            monitoring,
        ) = super().get_all_pts3d(gts, preds)

        # measure scene scale
        _, gt_scale_self = get_group_pointcloud_center_scale(gt_pts_self, masks)
        _, pred_scale_self = get_group_pointcloud_center_scale(pr_pts_self, masks)

        _, gt_scale_cross = get_group_pointcloud_center_scale(gt_pts_cross, masks)
        _, pred_scale_cross = get_group_pointcloud_center_scale(pr_pts_cross, masks)

        # prevent predictions to be in a ridiculous range
        pred_scale_self = pred_scale_self.clip(min=1e-3, max=1e3)
        pred_scale_cross = pred_scale_cross.clip(min=1e-3, max=1e3)

        # subtract the median depth
        if self.gt_scale:
            pr_pts_self = [
                pr_pt_self * gt_scale_self / pred_scale_self
                for pr_pt_self in pr_pts_self
            ]
            pr_pts_cross = [
                pr_pt_cross * gt_scale_cross / pred_scale_cross
                for pr_pt_cross in pr_pts_cross
            ]
        else:
            gt_pts_self = [gt_pt_self / gt_scale_self for gt_pt_self in gt_pts_self]
            gt_pts_cross = [
                gt_pt_cross / gt_scale_cross for gt_pt_cross in gt_pts_cross
            ]
            pr_pts_self = [pr_pt_self / pred_scale_self for pr_pt_self in pr_pts_self]
            pr_pts_cross = [
                pr_pt_cross / pred_scale_cross for pr_pt_cross in pr_pts_cross
            ]

        return (
            gt_pts_self,
            gt_pts_cross,
            pr_pts_self,
            pr_pts_cross,
            gt_poses,
            pr_poses,
            masks,
            skys,
            pose_masks,
            monitoring,
        )