File size: 12,762 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import tqdm
import torch
from dust3r.utils.device import to_cpu, collate_with_cat
from dust3r.utils.misc import invalid_to_nans
from dust3r.utils.geometry import depthmap_to_pts3d, geotrf
from dust3r.model import ARCroco3DStereo
from accelerate import Accelerator
import re


def custom_sort_key(key):
    text = key.split("/")
    if len(text) > 1:
        text, num = text[0], text[-1]
        return (text, int(num))
    else:
        return (key, -1)


def merge_chunk_dict(old_dict, curr_dict, add_number):
    new_dict = {}
    for key, value in curr_dict.items():

        match = re.search(r"(\d+)$", key)
        if match:

            num_part = int(match.group()) + add_number

            new_key = re.sub(r"(\d+)$", str(num_part), key, 1)
            new_dict[new_key] = value
        else:
            new_dict[key] = value
    new_dict = old_dict | new_dict
    return {k: new_dict[k] for k in sorted(new_dict.keys(), key=custom_sort_key)}


def _interleave_imgs(img1, img2):
    res = {}
    for key, value1 in img1.items():
        value2 = img2[key]
        if isinstance(value1, torch.Tensor):
            value = torch.stack((value1, value2), dim=1).flatten(0, 1)
        else:
            value = [x for pair in zip(value1, value2) for x in pair]
        res[key] = value
    return res


def make_batch_symmetric(batch):
    view1, view2 = batch
    view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1))
    return view1, view2


def loss_of_one_batch(
    batch,
    model,
    criterion,
    accelerator: Accelerator,
    symmetrize_batch=False,
    use_amp=False,
    ret=None,
    img_mask=None,
    inference=False,
):
    if len(batch) > 2:
        assert (
            symmetrize_batch is False
        ), "cannot symmetrize batch with more than 2 views"
    if symmetrize_batch:
        batch = make_batch_symmetric(batch)

    with torch.cuda.amp.autocast(enabled=not inference):
        if inference:
            output, state_args = model(batch, ret_state=True)
            preds, batch = output.ress, output.views
            result = dict(views=batch, pred=preds)
            return result[ret] if ret else result, state_args
        else:
            output = model(batch)
            preds, batch = output.ress, output.views

        with torch.cuda.amp.autocast(enabled=False):
            loss = criterion(batch, preds) if criterion is not None else None

    result = dict(views=batch, pred=preds, loss=loss)
    return result[ret] if ret else result


def loss_of_one_batch_tbptt(
    batch,
    model,
    criterion,
    chunk_size,
    loss_scaler,
    optimizer,
    accelerator: Accelerator,
    log_writer=None,
    symmetrize_batch=False,
    use_amp=False,
    ret=None,
    img_mask=None,
    inference=False,
):
    if len(batch) > 2:
        assert (
            symmetrize_batch is False
        ), "cannot symmetrize batch with more than 2 views"
    if symmetrize_batch:
        batch = make_batch_symmetric(batch)
    all_preds = []
    all_loss = 0.0
    all_loss_details = {}
    with torch.cuda.amp.autocast(enabled=not inference):
        with torch.no_grad():
            (feat, pos, shape), (
                init_state_feat,
                init_mem,
                state_feat,
                state_pos,
                mem,
            ) = accelerator.unwrap_model(model)._forward_encoder(batch)
        feat = [f.detach() for f in feat]
        pos = [p.detach() for p in pos]
        shape = [s.detach() for s in shape]
        init_state_feat = init_state_feat.detach()
        init_mem = init_mem.detach()

        for chunk_id in range((len(batch) - 1) // chunk_size + 1):
            preds = []
            chunk = []
            state_feat = state_feat.detach()
            state_pos = state_pos.detach()
            mem = mem.detach()
            if chunk_id < ((len(batch) - 1) // chunk_size + 1) - 4:
                with torch.no_grad():
                    for in_chunk_idx in range(chunk_size):
                        i = chunk_id * chunk_size + in_chunk_idx
                        if i >= len(batch):
                            break
                        res, (state_feat, mem) = accelerator.unwrap_model(
                            model
                        )._forward_decoder_step(
                            batch,
                            i,
                            feat_i=feat[i],
                            pos_i=pos[i],
                            shape_i=shape[i],
                            init_state_feat=init_state_feat,
                            init_mem=init_mem,
                            state_feat=state_feat,
                            state_pos=state_pos,
                            mem=mem,
                        )
                        preds.append(res)
                        all_preds.append({k: v.detach() for k, v in res.items()})
                        chunk.append(batch[i])
                with torch.cuda.amp.autocast(enabled=False):
                    loss, loss_details = (
                        criterion(chunk, preds, camera1=batch[0]["camera_pose"])
                        if criterion is not None
                        else None
                    )
                    all_loss += float(loss)
                    all_loss_details = merge_chunk_dict(
                        all_loss_details, loss_details, chunk_id * chunk_size
                    )
                    del loss
            else:
                for in_chunk_idx in range(chunk_size):
                    i = chunk_id * chunk_size + in_chunk_idx
                    if i >= len(batch):
                        break
                    res, (state_feat, mem) = accelerator.unwrap_model(
                        model
                    )._forward_decoder_step(
                        batch,
                        i,
                        feat_i=feat[i],
                        pos_i=pos[i],
                        shape_i=shape[i],
                        init_state_feat=init_state_feat,
                        init_mem=init_mem,
                        state_feat=state_feat,
                        state_pos=state_pos,
                        mem=mem,
                    )
                    preds.append(res)
                    all_preds.append({k: v.detach() for k, v in res.items()})
                    chunk.append(batch[i])
                with torch.cuda.amp.autocast(enabled=False):
                    loss, loss_details = (
                        criterion(chunk, preds, camera1=batch[0]["camera_pose"])
                        if criterion is not None
                        else None
                    )
                    all_loss += float(loss)
                    all_loss_details = merge_chunk_dict(
                        all_loss_details, loss_details, chunk_id * chunk_size
                    )
                    loss_scaler(
                        loss,
                        optimizer,
                        parameters=model.parameters(),
                        update_grad=True,
                        clip_grad=1.0,
                    )
                    optimizer.zero_grad()
                    del loss
    result = dict(
        views=batch,
        pred=all_preds,
        loss=(all_loss / ((len(batch) - 1) // chunk_size + 1), all_loss_details),
        already_backprop=True,
    )
    return result[ret] if ret else result


@torch.no_grad()
def inference(groups, model, device, verbose=True):
    ignore_keys = set(
        ["depthmap", "dataset", "label", "instance", "idx", "true_shape", "rng"]
    )
    for view in groups:
        for name in view.keys():  # pseudo_focal
            if name in ignore_keys:
                continue
            if isinstance(view[name], tuple) or isinstance(view[name], list):
                view[name] = [x.to(device, non_blocking=True) for x in view[name]]
            else:
                view[name] = view[name].to(device, non_blocking=True)

    if verbose:
        print(f">> Inference with model on {len(groups)} image/raymaps")

    res, state_args = loss_of_one_batch(groups, model, None, None, inference=True)
    result = to_cpu(res)
    return result, state_args


@torch.no_grad()
def inference_step(view, state_args, model, device, verbose=True):
    ignore_keys = set(
        ["depthmap", "dataset", "label", "instance", "idx", "true_shape", "rng"]
    )
    for name in view.keys():  # pseudo_focal
        if name in ignore_keys:
            continue
        if isinstance(view[name], tuple) or isinstance(view[name], list):
            view[name] = [x.to(device, non_blocking=True) for x in view[name]]
        else:
            view[name] = view[name].to(device, non_blocking=True)

    with torch.cuda.amp.autocast(enabled=False):
        state_feat, state_pos, init_state_feat, mem, init_mem = state_args
        pred, _ = model.inference_step(
            view, state_feat, state_pos, init_state_feat, mem, init_mem
        )

    res = dict(pred=pred)
    result = to_cpu(res)
    return result


@torch.no_grad()
def inference_recurrent(groups, model, device, verbose=True):
    ignore_keys = set(
        ["depthmap", "dataset", "label", "instance", "idx", "true_shape", "rng"]
    )
    for view in groups:
        for name in view.keys():  # pseudo_focal
            if name in ignore_keys:
                continue
            if isinstance(view[name], tuple) or isinstance(view[name], list):
                view[name] = [x.to(device, non_blocking=True) for x in view[name]]
            else:
                view[name] = view[name].to(device, non_blocking=True)

    if verbose:
        print(f">> Inference with model on {len(groups)} image/raymaps")

    with torch.cuda.amp.autocast(enabled=False):
        preds, batch, state_args = model.forward_recurrent(
            groups, device, ret_state=True
        )
        res = dict(views=batch, pred=preds)
    result = to_cpu(res)
    return result, state_args


def check_if_same_size(pairs):
    shapes1 = [img1["img"].shape[-2:] for img1, img2 in pairs]
    shapes2 = [img2["img"].shape[-2:] for img1, img2 in pairs]
    return all(shapes1[0] == s for s in shapes1) and all(
        shapes2[0] == s for s in shapes2
    )


def get_pred_pts3d(gt, pred, use_pose=False, inplace=False):
    if "depth" in pred and "pseudo_focal" in pred:
        try:
            pp = gt["camera_intrinsics"][..., :2, 2]
        except KeyError:
            pp = None
        pts3d = depthmap_to_pts3d(**pred, pp=pp)

    elif "pts3d" in pred:

        pts3d = pred["pts3d"]

    elif "pts3d_in_other_view" in pred:

        assert use_pose is True
        return (
            pred["pts3d_in_other_view"]
            if inplace
            else pred["pts3d_in_other_view"].clone()
        )

    if use_pose:
        camera_pose = pred.get("camera_pose")
        assert camera_pose is not None
        pts3d = geotrf(camera_pose, pts3d)

    return pts3d


def find_opt_scaling(
    gt_pts1,
    gt_pts2,
    pr_pts1,
    pr_pts2=None,
    fit_mode="weiszfeld_stop_grad",
    valid1=None,
    valid2=None,
):
    assert gt_pts1.ndim == pr_pts1.ndim == 4
    assert gt_pts1.shape == pr_pts1.shape
    if gt_pts2 is not None:
        assert gt_pts2.ndim == pr_pts2.ndim == 4
        assert gt_pts2.shape == pr_pts2.shape

    nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2)
    nan_gt_pts2 = (
        invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None
    )

    pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2)
    pr_pts2 = (
        invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None
    )

    all_gt = (
        torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1)
        if gt_pts2 is not None
        else nan_gt_pts1
    )
    all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1

    dot_gt_pr = (all_pr * all_gt).sum(dim=-1)
    dot_gt_gt = all_gt.square().sum(dim=-1)

    if fit_mode.startswith("avg"):

        scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
    elif fit_mode.startswith("median"):
        scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values
    elif fit_mode.startswith("weiszfeld"):

        scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)

        for iter in range(10):

            dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1)

            w = dis.clip_(min=1e-8).reciprocal()

            scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1)
    else:
        raise ValueError(f"bad {fit_mode=}")

    if fit_mode.endswith("stop_grad"):
        scaling = scaling.detach()

    scaling = scaling.clip(min=1e-3)

    return scaling