File size: 6,112 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os.path as osp
import os
import numpy as np
import sys

sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
import h5py
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2


class Waymo_Multi(BaseMultiViewDataset):
    """Dataset of outdoor street scenes, 5 images each time"""

    def __init__(self, *args, ROOT, **kwargs):
        self.ROOT = ROOT
        self.max_interval = 8
        self.video = True
        self.is_metric = True
        super().__init__(*args, **kwargs)
        assert self.split is None
        self._load_data()

    def load_invalid_dict(self, h5_file_path):
        invalid_dict = {}
        with h5py.File(h5_file_path, "r") as h5f:
            for scene in h5f:
                data = h5f[scene]["invalid_pairs"][:]
                invalid_pairs = set(
                    tuple(pair.decode("utf-8").split("_")) for pair in data
                )
                invalid_dict[scene] = invalid_pairs
        return invalid_dict

    def _load_data(self):
        invalid_dict = self.load_invalid_dict(
            os.path.join(self.ROOT, "invalid_files.h5")
        )
        scene_dirs = sorted(
            [
                d
                for d in os.listdir(self.ROOT)
                if os.path.isdir(os.path.join(self.ROOT, d))
            ]
        )
        offset = 0
        scenes = []
        sceneids = []
        images = []
        start_img_ids = []
        scene_img_list = []
        is_video = []
        j = 0

        for scene in scene_dirs:
            scene_dir = osp.join(self.ROOT, scene)
            invalid_pairs = invalid_dict.get(scene, set())
            seq2frames = {}
            for f in os.listdir(scene_dir):
                if not f.endswith(".jpg"):
                    continue
                basename = f[:-4]
                frame_id = basename.split("_")[0]
                seq_id = basename.split("_")[1]
                if seq_id == "5":
                    continue
                if (seq_id, frame_id) in invalid_pairs:
                    continue  # Skip invalid files
                if seq_id not in seq2frames:
                    seq2frames[seq_id] = []
                seq2frames[seq_id].append(frame_id)

            for seq_id, frame_ids in seq2frames.items():
                frame_ids = sorted(frame_ids)
                num_imgs = len(frame_ids)
                img_ids = list(np.arange(num_imgs) + offset)
                cut_off = (
                    self.num_views
                    if not self.allow_repeat
                    else max(self.num_views // 3, 3)
                )
                start_img_ids_ = img_ids[: num_imgs - cut_off + 1]

                if num_imgs < cut_off:
                    print(f"Skipping {scene}_{seq_id}")
                    continue

                scenes.append((scene, seq_id))
                sceneids.extend([j] * num_imgs)
                images.extend(frame_ids)
                start_img_ids.extend(start_img_ids_)
                scene_img_list.append(img_ids)

                offset += num_imgs
                j += 1

        self.scenes = scenes
        self.sceneids = sceneids
        self.images = images
        self.start_img_ids = start_img_ids
        self.scene_img_list = scene_img_list
        self.is_video = is_video

    def __len__(self):
        return len(self.start_img_ids)

    def get_image_num(self):
        return len(self.images)

    def get_stats(self):
        return f"{len(self)} groups of views"

    def _get_views(self, idx, resolution, rng, num_views):
        start_id = self.start_img_ids[idx]
        all_image_ids = self.scene_img_list[self.sceneids[start_id]]
        _, seq_id = self.scenes[self.sceneids[start_id]]
        max_interval = self.max_interval // 2 if seq_id == "4" else self.max_interval
        pos, ordered_video = self.get_seq_from_start_id(
            num_views,
            start_id,
            all_image_ids,
            rng,
            max_interval=max_interval,
            video_prob=0.9,
            fix_interval_prob=0.9,
            block_shuffle=16,
        )
        image_idxs = np.array(all_image_ids)[pos]
        views = []
        ordered_video = True

        views = []

        for v, view_idx in enumerate(image_idxs):
            scene_id = self.sceneids[view_idx]
            scene_dir, seq_id = self.scenes[scene_id]
            scene_dir = osp.join(self.ROOT, scene_dir)
            frame_id = self.images[view_idx]

            impath = f"{frame_id}_{seq_id}"
            image = imread_cv2(osp.join(scene_dir, impath + ".jpg"))
            depthmap = imread_cv2(osp.join(scene_dir, impath + ".exr"))
            camera_params = np.load(osp.join(scene_dir, impath + ".npz"))

            intrinsics = np.float32(camera_params["intrinsics"])
            camera_pose = np.float32(camera_params["cam2world"])

            image, depthmap, intrinsics = self._crop_resize_if_necessary(
                image, depthmap, intrinsics, resolution, rng, info=(scene_dir, impath)
            )

            # generate img mask and raymap mask
            img_mask, ray_mask = self.get_img_and_ray_masks(
                self.is_metric, v, rng, p=[0.85, 0.10, 0.05]
            )

            views.append(
                dict(
                    img=image,
                    depthmap=depthmap,
                    camera_pose=camera_pose,  # cam2world
                    camera_intrinsics=intrinsics,
                    dataset="Waymo",
                    label=osp.relpath(scene_dir, self.ROOT),
                    is_metric=self.is_metric,
                    instance=osp.join(scene_dir, impath + ".jpg"),
                    is_video=ordered_video,
                    quantile=np.array(0.98, dtype=np.float32),
                    img_mask=img_mask,
                    ray_mask=ray_mask,
                    camera_only=False,
                    depth_only=False,
                    single_view=False,
                    reset=False,
                )
            )

        return views