File size: 5,539 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os.path as osp
import numpy as np
import cv2
import numpy as np
import itertools
import os
import sys

sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))

from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2


class VirtualKITTI2_Multi(BaseMultiViewDataset):

    def __init__(self, ROOT, *args, **kwargs):
        self.ROOT = ROOT
        self.video = True
        self.is_metric = True
        self.max_interval = 5
        super().__init__(*args, **kwargs)
        # loading all
        self._load_data(self.split)

    def _load_data(self, split=None):
        scene_dirs = sorted(
            [
                d
                for d in os.listdir(self.ROOT)
                if os.path.isdir(os.path.join(self.ROOT, d))
            ]
        )
        if split == "train":
            scene_dirs = scene_dirs[:-1]
        elif split == "test":
            scene_dirs = scene_dirs[-1:]
        seq_dirs = []
        for scene in scene_dirs:
            seq_dirs += sorted(
                [
                    os.path.join(scene, d)
                    for d in os.listdir(os.path.join(self.ROOT, scene))
                    if os.path.isdir(os.path.join(self.ROOT, scene, d))
                ]
            )
        offset = 0
        scenes = []
        sceneids = []
        images = []
        scene_img_list = []
        start_img_ids = []
        j = 0

        for seq_idx, seq in enumerate(seq_dirs):
            seq_path = osp.join(self.ROOT, seq)
            for cam in ["Camera_0", "Camera_1"]:
                basenames = sorted(
                    [
                        f[:5]
                        for f in os.listdir(seq_path + "/" + cam)
                        if f.endswith(".jpg")
                    ]
                )
                num_imgs = len(basenames)
                cut_off = (
                    self.num_views
                    if not self.allow_repeat
                    else max(self.num_views // 3, 3)
                )
                if num_imgs < cut_off:
                    print(f"Skipping {scene}")
                    continue
                img_ids = list(np.arange(num_imgs) + offset)
                start_img_ids_ = img_ids[: num_imgs - cut_off + 1]

                scenes.append(seq + "/" + cam)
                scene_img_list.append(img_ids)
                sceneids.extend([j] * num_imgs)
                images.extend(basenames)
                start_img_ids.extend(start_img_ids_)
                offset += num_imgs
                j += 1

        self.scenes = scenes
        self.sceneids = sceneids
        self.images = images
        self.start_img_ids = start_img_ids
        self.scene_img_list = scene_img_list

    def __len__(self):
        return len(self.start_img_ids)

    def get_image_num(self):
        return len(self.images)

    def get_stats(self):
        return f"{len(self)} groups of views"

    def _get_views(self, idx, resolution, rng, num_views):
        start_id = self.start_img_ids[idx]
        scene_id = self.sceneids[start_id]
        all_image_ids = self.scene_img_list[scene_id]
        pos, ordered_video = self.get_seq_from_start_id(
            num_views,
            start_id,
            all_image_ids,
            rng,
            max_interval=self.max_interval,
            video_prob=1.0,
            fix_interval_prob=0.9,
        )
        image_idxs = np.array(all_image_ids)[pos]

        views = []

        for v, view_idx in enumerate(image_idxs):
            scene_id = self.sceneids[view_idx]
            scene_dir = osp.join(self.ROOT, self.scenes[scene_id])
            basename = self.images[view_idx]

            img = basename + "_rgb.jpg"
            image = imread_cv2(osp.join(scene_dir, img))
            depthmap = (
                cv2.imread(
                    osp.join(scene_dir, basename + "_depth.png"),
                    cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH,
                ).astype(np.float32)
                / 100.0
            )
            camera_params = np.load(osp.join(scene_dir, basename + "_cam.npz"))

            intrinsics = camera_params["camera_intrinsics"]
            camera_pose = camera_params["camera_pose"]

            sky_mask = depthmap >= 655
            depthmap[sky_mask] = -1.0  # sky

            image, depthmap, intrinsics = self._crop_resize_if_necessary(
                image, depthmap, intrinsics, resolution, rng, info=(scene_dir, img)
            )

            # generate img mask and raymap mask
            img_mask, ray_mask = self.get_img_and_ray_masks(
                self.is_metric, v, rng, p=[0.85, 0.1, 0.05]
            )

            views.append(
                dict(
                    img=image,
                    depthmap=depthmap,
                    camera_pose=camera_pose,  # cam2world
                    camera_intrinsics=intrinsics,
                    dataset="VirtualKITTI2",
                    label=scene_dir,
                    is_metric=self.is_metric,
                    instance=scene_dir + "_" + img,
                    is_video=ordered_video,
                    quantile=np.array(1.0, dtype=np.float32),
                    img_mask=img_mask,
                    ray_mask=ray_mask,
                    camera_only=False,
                    depth_only=False,
                    single_view=False,
                    reset=False,
                )
            )
        assert len(views) == num_views
        return views