Spaces:
Runtime error
Runtime error
File size: 2,906 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import os.path as osp
import cv2
import numpy as np
import itertools
import os
import sys
sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
from tqdm import tqdm
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2
class UrbanSyn(BaseMultiViewDataset):
def __init__(self, *args, ROOT, **kwargs):
self.ROOT = ROOT
self.video = False
self.is_metric = True
super().__init__(*args, **kwargs)
self.loaded_data = self._load_data()
def _load_data(self):
rgb_dir = osp.join(self.ROOT, "rgb")
basenames = sorted([f[:-4] for f in os.listdir(rgb_dir) if f.endswith(".png")])
self.img_names = basenames
def __len__(self):
return len(self.img_names)
def get_image_num(self):
return len(self.img_names)
def _get_views(self, idx, resolution, rng, num_views):
new_seed = rng.integers(0, 2**32) + idx
new_rng = np.random.default_rng(new_seed)
img_names = new_rng.choice(self.img_names, num_views, replace=False)
views = []
for img_name in img_names:
# Load RGB image
rgb_image = imread_cv2(osp.join(self.ROOT, "rgb", f"{img_name}.png"))
depthmap = np.load(osp.join(self.ROOT, "depth", f"{img_name}.npy"))
sky_mask = (
imread_cv2(osp.join(self.ROOT, "sky_mask", f"{img_name}.png"))[..., 0]
>= 127
)
depthmap[sky_mask] = -1.0
depthmap = np.nan_to_num(depthmap, nan=0, posinf=0, neginf=0)
depthmap[depthmap > 200] = 0.0
intrinsics = np.load(osp.join(self.ROOT, "cam", f"{img_name}.npz"))[
"intrinsics"
]
# camera pose is not provided, placeholder
camera_pose = np.eye(4)
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=img_name
)
views.append(
dict(
img=rgb_image,
depthmap=depthmap.astype(np.float32),
camera_pose=camera_pose.astype(np.float32),
camera_intrinsics=intrinsics.astype(np.float32),
dataset="urbansyn",
label=img_name,
instance=f"{str(idx)}_{img_name}",
is_metric=self.is_metric,
is_video=False,
quantile=np.array(1.0, dtype=np.float32),
img_mask=True,
ray_mask=False,
camera_only=False,
depth_only=False,
single_view=True,
reset=True,
)
)
assert len(views) == num_views
return views
|