File size: 6,991 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os.path as osp
import cv2
import numpy as np
import itertools
import os
import sys

sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))

from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2


class ScanNetpp_Multi(BaseMultiViewDataset):
    def __init__(self, *args, ROOT, **kwargs):
        self.ROOT = ROOT
        self.video = True
        self.is_metric = True
        self.max_interval = 3
        super().__init__(*args, **kwargs)
        assert self.split == "train"
        self.loaded_data = self._load_data()

    def _load_data(self):
        with np.load(osp.join(self.ROOT, "all_metadata.npz")) as data:
            self.scenes = data["scenes"]
        offset = 0
        scenes = []
        sceneids = []
        images = []
        intrinsics = []
        trajectories = []
        groups = []
        id_ranges = []
        j = 0
        self.image_num = 0
        for scene in self.scenes:
            scene_dir = osp.join(self.ROOT, scene)
            with np.load(
                osp.join(scene_dir, "new_scene_metadata.npz"), allow_pickle=True
            ) as data:
                imgs = data["images"]
                self.image_num += len(imgs)
                img_ids = np.arange(len(imgs)).tolist()
                intrins = data["intrinsics"]
                traj = data["trajectories"]
                imgs_on_disk = sorted(os.listdir(osp.join(scene_dir, "images")))
                imgs_on_disk = list(map(lambda x: x[:-4], imgs_on_disk))

                dslr_ids = [
                    i + offset
                    for i in img_ids
                    if imgs[i].startswith("DSC") and imgs[i] in imgs_on_disk
                ]
                iphone_ids = [
                    i + offset
                    for i in img_ids
                    if imgs[i].startswith("frame") and imgs[i] in imgs_on_disk
                ]

                num_imgs = len(imgs)
                assert max(dslr_ids) < min(iphone_ids)
                assert "image_collection" in data

                img_groups = []
                img_id_ranges = []

                for ref_id, group in data["image_collection"].item().items():
                    if len(group) + 1 < self.num_views:
                        continue
                    group.insert(0, (ref_id, 1.0))
                    sorted_group = sorted(group, key=lambda x: x[1], reverse=True)
                    group = [int(x[0] + offset) for x in sorted_group]
                    img_groups.append(sorted(group))

                    if imgs[ref_id].startswith("frame"):
                        img_id_ranges.append(dslr_ids)
                    else:
                        img_id_ranges.append(iphone_ids)

                if len(img_groups) == 0:
                    print(f"Skipping {scene}")
                    continue
                scenes.append(scene)
                sceneids.extend([j] * num_imgs)
                images.extend(imgs)
                intrinsics.append(intrins)
                trajectories.append(traj)

                # offset groups
                groups.extend(img_groups)
                id_ranges.extend(img_id_ranges)
                offset += num_imgs
                j += 1

        self.scenes = scenes
        self.sceneids = sceneids
        self.images = images
        self.intrinsics = np.concatenate(intrinsics, axis=0)
        self.trajectories = np.concatenate(trajectories, axis=0)
        self.id_ranges = id_ranges
        self.groups = groups

    def __len__(self):
        return len(self.groups) * 10

    def get_image_num(self):
        return self.image_num

    def _get_views(self, idx, resolution, rng, num_views):
        idx = idx // 10
        image_idxs = self.groups[idx]
        rand_val = rng.random()

        image_idxs_video = self.id_ranges[idx]
        cut_off = num_views if not self.allow_repeat else max(num_views // 3, 3)
        start_image_idxs = image_idxs_video[: len(image_idxs_video) - cut_off + 1]

        if rand_val < 0.7 and len(start_image_idxs) > 0:
            start_id = rng.choice(start_image_idxs)
            pos, ordered_video = self.get_seq_from_start_id(
                num_views,
                start_id,
                image_idxs_video,
                rng,
                max_interval=self.max_interval,
                video_prob=0.8,
                fix_interval_prob=0.5,
                block_shuffle=16,
            )
            image_idxs = np.array(image_idxs_video)[pos]

        else:
            ordered_video = True
            # ordered video with varying intervals
            num_candidates = len(image_idxs)
            max_id = min(num_candidates, int(num_views * (2 + 2 * rng.random())))
            image_idxs = sorted(rng.permutation(image_idxs[:max_id])[:num_views])
            if rand_val > 0.75:
                ordered_video = False
                image_idxs = rng.permutation(image_idxs)

        views = []
        for v, view_idx in enumerate(image_idxs):
            scene_id = self.sceneids[view_idx]
            scene_dir = osp.join(self.ROOT, self.scenes[scene_id])

            intrinsics = self.intrinsics[view_idx]
            camera_pose = self.trajectories[view_idx]
            basename = self.images[view_idx]

            # Load RGB image
            rgb_image = imread_cv2(osp.join(scene_dir, "images", basename + ".jpg"))
            # Load depthmap
            depthmap = imread_cv2(
                osp.join(scene_dir, "depth", basename + ".png"), cv2.IMREAD_UNCHANGED
            )
            depthmap = depthmap.astype(np.float32) / 1000
            depthmap[~np.isfinite(depthmap)] = 0  # invalid

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx
            )

            # generate img mask and raymap mask
            img_mask, ray_mask = self.get_img_and_ray_masks(
                self.is_metric, v, rng, p=[0.75, 0.2, 0.05]
            )

            views.append(
                dict(
                    img=rgb_image,
                    depthmap=depthmap.astype(np.float32),
                    camera_pose=camera_pose.astype(np.float32),
                    camera_intrinsics=intrinsics.astype(np.float32),
                    dataset="ScanNet++",
                    label=self.scenes[scene_id] + "_" + basename,
                    instance=f"{str(idx)}_{str(view_idx)}",
                    is_metric=self.is_metric,
                    is_video=ordered_video,
                    quantile=np.array(0.99, dtype=np.float32),
                    img_mask=img_mask,
                    ray_mask=ray_mask,
                    camera_only=False,
                    depth_only=False,
                    single_view=False,
                    reset=False,
                )
            )
        assert len(views) == num_views
        return views