File size: 8,961 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os.path as osp
import os
import sys
import itertools

sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
import cv2
import numpy as np

from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2


def stratified_sampling(indices, num_samples, rng=None):
    if num_samples > len(indices):
        raise ValueError("num_samples cannot exceed the number of available indices.")
    elif num_samples == len(indices):
        return indices

    sorted_indices = sorted(indices)
    stride = len(sorted_indices) / num_samples
    sampled_indices = []
    if rng is None:
        rng = np.random.default_rng()

    for i in range(num_samples):
        start = int(i * stride)
        end = int((i + 1) * stride)
        # Ensure end does not exceed the list
        end = min(end, len(sorted_indices))
        if start < end:
            # Randomly select within the current stratum
            rand_idx = rng.integers(start, end)
            sampled_indices.append(sorted_indices[rand_idx])
        else:
            # In case of any rounding issues, select the last index
            sampled_indices.append(sorted_indices[-1])

    return rng.permutation(sampled_indices)


class ARKitScenes_Multi(BaseMultiViewDataset):
    def __init__(self, *args, split, ROOT, **kwargs):
        self.ROOT = ROOT
        self.video = True
        self.is_metric = True
        self.max_interval = 8
        super().__init__(*args, **kwargs)
        if split == "train":
            self.split = "Training"
        elif split == "test":
            self.split = "Test"
        else:
            raise ValueError("")

        self.loaded_data = self._load_data(self.split)

    def _load_data(self, split):
        with np.load(osp.join(self.ROOT, split, "all_metadata.npz")) as data:
            self.scenes: np.ndarray = data["scenes"]
            high_res_list = np.array(
                [
                    d
                    for d in os.listdir(
                        os.path.join(
                            self.ROOT.rstrip("/") + "_highres",
                            split if split == "Training" else "Validation",
                        )
                    )
                    if os.path.join(self.ROOT + "_highres", split, d)
                ]
            )
            self.scenes = np.setdiff1d(self.scenes, high_res_list)
        offset = 0
        counts = []
        scenes = []
        sceneids = []
        images = []
        intrinsics = []
        trajectories = []
        groups = []
        id_ranges = []
        j = 0
        for scene_idx, scene in enumerate(self.scenes):
            scene_dir = osp.join(self.ROOT, self.split, scene)
            with np.load(
                osp.join(scene_dir, "new_scene_metadata.npz"), allow_pickle=True
            ) as data:
                imgs = data["images"]
                intrins = data["intrinsics"]
                traj = data["trajectories"]
                min_seq_len = (
                    self.num_views
                    if not self.allow_repeat
                    else max(self.num_views // 3, 3)
                )
                if len(imgs) < min_seq_len:
                    print(f"Skipping {scene}")
                    continue

                collections = {}
                assert "image_collection" in data, "Image collection not found"
                collections["image"] = data["image_collection"]

                num_imgs = imgs.shape[0]
                img_groups = []
                min_group_len = (
                    self.num_views
                    if not self.allow_repeat
                    else max(self.num_views // 3, 3)
                )
                for ref_id, group in collections["image"].item().items():
                    if len(group) + 1 < min_group_len:
                        continue

                    # groups are (idx, score)s
                    group.insert(0, (ref_id, 1.0))
                    group = [int(x[0] + offset) for x in group]
                    img_groups.append(sorted(group))

                if len(img_groups) == 0:
                    print(f"Skipping {scene}")
                    continue

                scenes.append(scene)
                sceneids.extend([j] * num_imgs)
                id_ranges.extend([(offset, offset + num_imgs) for _ in range(num_imgs)])
                images.extend(imgs)
                K = np.expand_dims(np.eye(3), 0).repeat(num_imgs, 0)

                K[:, 0, 0] = [fx for _, _, fx, _, _, _ in intrins]
                K[:, 1, 1] = [fy for _, _, _, fy, _, _ in intrins]
                K[:, 0, 2] = [cx for _, _, _, _, cx, _ in intrins]
                K[:, 1, 2] = [cy for _, _, _, _, _, cy in intrins]
                intrinsics.extend(list(K))
                trajectories.extend(list(traj))

                # offset groups
                groups.extend(img_groups)
                counts.append(offset)
                offset += num_imgs
                j += 1

        self.scenes = scenes
        self.sceneids = sceneids
        self.id_ranges = id_ranges
        self.images = images
        self.intrinsics = intrinsics
        self.trajectories = trajectories
        self.groups = groups

    def __len__(self):
        return len(self.groups)

    def get_image_num(self):
        return len(self.images)

    def _get_views(self, idx, resolution, rng, num_views):

        if rng.choice([True, False]):
            image_idxs = np.arange(self.id_ranges[idx][0], self.id_ranges[idx][1])
            cut_off = num_views if not self.allow_repeat else max(num_views // 3, 3)
            start_image_idxs = image_idxs[: len(image_idxs) - cut_off + 1]
            start_id = rng.choice(start_image_idxs)
            pos, ordered_video = self.get_seq_from_start_id(
                num_views,
                start_id,
                image_idxs.tolist(),
                rng,
                max_interval=self.max_interval,
                video_prob=0.8,
                fix_interval_prob=0.5,
                block_shuffle=16,
            )
            image_idxs = np.array(image_idxs)[pos]
        else:
            ordered_video = False
            image_idxs = self.groups[idx]
            image_idxs = rng.permutation(image_idxs)
            if len(image_idxs) > num_views:
                image_idxs = image_idxs[:num_views]
            else:
                if rng.random() < 0.8:
                    image_idxs = rng.choice(image_idxs, size=num_views, replace=True)
                else:
                    repeat_num = num_views // len(image_idxs) + 1
                    image_idxs = np.tile(image_idxs, repeat_num)[:num_views]

        views = []
        for v, view_idx in enumerate(image_idxs):
            scene_id = self.sceneids[view_idx]
            scene_dir = osp.join(self.ROOT, self.split, self.scenes[scene_id])

            intrinsics = self.intrinsics[view_idx]
            camera_pose = self.trajectories[view_idx]
            basename = self.images[view_idx]
            assert (
                basename[:8] == self.scenes[scene_id]
            ), f"{basename}, {self.scenes[scene_id]}"
            # print(scene_dir, basename)
            # Load RGB image
            rgb_image = imread_cv2(
                osp.join(scene_dir, "vga_wide", basename.replace(".png", ".jpg"))
            )
            # Load depthmap
            depthmap = imread_cv2(
                osp.join(scene_dir, "lowres_depth", basename), cv2.IMREAD_UNCHANGED
            )
            depthmap = depthmap.astype(np.float32) / 1000.0
            depthmap[~np.isfinite(depthmap)] = 0  # invalid

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx
            )

            # generate img mask and raymap mask
            img_mask, ray_mask = self.get_img_and_ray_masks(
                self.is_metric, v, rng, p=[0.75, 0.2, 0.05]
            )

            views.append(
                dict(
                    img=rgb_image,
                    depthmap=depthmap.astype(np.float32),
                    camera_pose=camera_pose.astype(np.float32),
                    camera_intrinsics=intrinsics.astype(np.float32),
                    dataset="arkitscenes",
                    label=self.scenes[scene_id] + "_" + basename,
                    instance=f"{str(idx)}_{str(view_idx)}",
                    is_metric=self.is_metric,
                    is_video=ordered_video,
                    quantile=np.array(0.98, dtype=np.float32),
                    img_mask=img_mask,
                    ray_mask=ray_mask,
                    camera_only=False,
                    depth_only=False,
                    single_view=False,
                    reset=False,
                )
            )
        assert len(views) == num_views
        return views