File size: 6,938 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from copy import deepcopy
import cv2

import numpy as np
import torch
import torch.nn as nn
import roma
from copy import deepcopy
import tqdm
import matplotlib as mpl
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from scipy.spatial.transform import Rotation
from PIL import Image
import imageio.v2 as iio
from matplotlib.figure import Figure


def save_focals(cam_dict, path):
    # convert focal to txt
    focals = cam_dict["focal"]
    np.savetxt(path, focals, fmt="%.6f")
    return focals


def save_intrinsics(cam_dict, path):
    K_raw = np.eye(3)[None].repeat(len(cam_dict["focal"]), axis=0)
    K_raw[:, 0, 0] = cam_dict["focal"]
    K_raw[:, 1, 1] = cam_dict["focal"]
    K_raw[:, :2, 2] = cam_dict["pp"]
    K = K_raw.reshape(-1, 9)
    np.savetxt(path, K, fmt="%.6f")
    return K_raw


def save_conf_maps(conf, path):
    for i, c in enumerate(conf):
        np.save(f"{path}/conf_{i}.npy", c.detach().cpu().numpy())
    return conf


def save_rgb_imgs(colors, path):
    imgs = colors
    for i, img in enumerate(imgs):
        # convert from rgb to bgr
        iio.imwrite(
            f"{path}/frame_{i:04d}.jpg", (img.cpu().numpy() * 255).astype(np.uint8)
        )
    return imgs


def save_depth_maps(pts3ds_self, path, conf_self=None):
    depth_maps = torch.stack([pts3d_self[..., -1] for pts3d_self in pts3ds_self], 0)
    min_depth = depth_maps.min()  # float(torch.quantile(out, 0.01))
    max_depth = depth_maps.max()  # float(torch.quantile(out, 0.99))
    colored_depth = colorize(
        depth_maps,
        cmap_name="Spectral_r",
        range=(min_depth, max_depth),
        append_cbar=True,
    )
    images = []

    if conf_self is not None:
        conf_selfs = torch.concat(conf_self, 0)
        min_conf = torch.log(conf_selfs.min())  # float(torch.quantile(out, 0.01))
        max_conf = torch.log(conf_selfs.max())  # float(torch.quantile(out, 0.99))
        colored_conf = colorize(
            torch.log(conf_selfs),
            cmap_name="jet",
            range=(min_conf, max_conf),
            append_cbar=True,
        )

    for i, depth_map in enumerate(colored_depth):
        # Apply color map to depth map
        img_path = f"{path}/frame_{(i):04d}.png"
        if conf_self is None:
            to_save = (depth_map * 255).detach().cpu().numpy().astype(np.uint8)
        else:
            to_save = torch.cat([depth_map, colored_conf[i]], dim=1)
            to_save = (to_save * 255).detach().cpu().numpy().astype(np.uint8)
        iio.imwrite(img_path, to_save)
        images.append(Image.open(img_path))
        np.save(f"{path}/frame_{(i):04d}.npy", depth_maps[i].detach().cpu().numpy())

    # comment this as it may fail sometimes
    # images[0].save(f'{path}/_depth_maps.gif', save_all=True, append_images=images[1:], duration=100, loop=0)

    return depth_maps


def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2):
    """
    :param w: pixels
    :param h: pixels
    :param vmin: min value
    :param vmax: max value
    :param cmap_name:
    :param label
    :return:
    """
    fig = Figure(figsize=(2, 8), dpi=100)
    fig.subplots_adjust(right=1.5)
    canvas = FigureCanvasAgg(fig)

    # Do some plotting.
    ax = fig.add_subplot(111)
    cmap = cm.get_cmap(cmap_name)
    norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)

    tick_cnt = 6
    tick_loc = np.linspace(vmin, vmax, tick_cnt)
    cb1 = mpl.colorbar.ColorbarBase(
        ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical"
    )

    tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
    if cbar_precision == 0:
        tick_label = [x[:-2] for x in tick_label]

    cb1.set_ticklabels(tick_label)

    cb1.ax.tick_params(labelsize=18, rotation=0)
    if label is not None:
        cb1.set_label(label)

    # fig.tight_layout()

    canvas.draw()
    s, (width, height) = canvas.print_to_buffer()

    im = np.frombuffer(s, np.uint8).reshape((height, width, 4))

    im = im[:, :, :3].astype(np.float32) / 255.0
    if h != im.shape[0]:
        w = int(im.shape[1] / im.shape[0] * h)
        im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)

    return im


def colorize_np(
    x,
    cmap_name="jet",
    mask=None,
    range=None,
    append_cbar=False,
    cbar_in_image=False,
    cbar_precision=2,
):
    """
    turn a grayscale image into a color image
    :param x: input grayscale, [H, W]
    :param cmap_name: the colorization method
    :param mask: the mask image, [H, W]
    :param range: the range for scaling, automatic if None, [min, max]
    :param append_cbar: if append the color bar
    :param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
    :return: colorized image, [H, W]
    """
    if range is not None:
        vmin, vmax = range
    elif mask is not None:
        # vmin, vmax = np.percentile(x[mask], (2, 100))
        vmin = np.min(x[mask][np.nonzero(x[mask])])
        vmax = np.max(x[mask])
        # vmin = vmin - np.abs(vmin) * 0.01
        x[np.logical_not(mask)] = vmin
        # print(vmin, vmax)
    else:
        vmin, vmax = np.percentile(x, (1, 100))
        vmax += 1e-6

    x = np.clip(x, vmin, vmax)
    x = (x - vmin) / (vmax - vmin)
    # x = np.clip(x, 0., 1.)

    cmap = cm.get_cmap(cmap_name)
    x_new = cmap(x)[:, :, :3]

    if mask is not None:
        mask = np.float32(mask[:, :, np.newaxis])
        x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask)

    cbar = get_vertical_colorbar(
        h=x.shape[0],
        vmin=vmin,
        vmax=vmax,
        cmap_name=cmap_name,
        cbar_precision=cbar_precision,
    )

    if append_cbar:
        if cbar_in_image:
            x_new[:, -cbar.shape[1] :, :] = cbar
        else:
            x_new = np.concatenate(
                (x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1
            )
        return x_new
    else:
        return x_new


# tensor
def colorize(
    x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False
):
    """
    turn a grayscale image into a color image
    :param x: torch.Tensor, grayscale image, [H, W] or [B, H, W]
    :param mask: torch.Tensor or None, mask image, [H, W] or [B, H, W] or None
    """

    device = x.device
    x = x.cpu().numpy()
    if mask is not None:
        mask = mask.cpu().numpy() > 0.99
        kernel = np.ones((3, 3), np.uint8)

    if x.ndim == 2:
        x = x[None]
        if mask is not None:
            mask = mask[None]

    out = []
    for x_ in x:
        if mask is not None:
            mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)

        x_ = colorize_np(x_, cmap_name, mask, range, append_cbar, cbar_in_image)
        out.append(torch.from_numpy(x_).to(device).float())
    out = torch.stack(out).squeeze(0)
    return out