Spaces:
Runtime error
Runtime error
File size: 8,838 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
from copy import deepcopy
import cv2
import numpy as np
import torch
import torch.nn as nn
import roma
from copy import deepcopy
import tqdm
import matplotlib as mpl
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from scipy.spatial.transform import Rotation
from eval.relpose.evo_utils import *
from PIL import Image
import imageio.v2 as iio
from matplotlib.figure import Figure
# from checkpoints.dust3r.viz import colorize_np, colorize
def todevice(batch, device, callback=None, non_blocking=False):
"""Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy).
batch: list, tuple, dict of tensors or other things
device: pytorch device or 'numpy'
callback: function that would be called on every sub-elements.
"""
if callback:
batch = callback(batch)
if isinstance(batch, dict):
return {k: todevice(v, device) for k, v in batch.items()}
if isinstance(batch, (tuple, list)):
return type(batch)(todevice(x, device) for x in batch)
x = batch
if device == "numpy":
if isinstance(x, torch.Tensor):
x = x.detach().cpu().numpy()
elif x is not None:
if isinstance(x, np.ndarray):
x = torch.from_numpy(x)
if torch.is_tensor(x):
x = x.to(device, non_blocking=non_blocking)
return x
to_device = todevice # alias
def to_numpy(x):
return todevice(x, "numpy")
def c2w_to_tumpose(c2w):
"""
Convert a camera-to-world matrix to a tuple of translation and rotation
input: c2w: 4x4 matrix
output: tuple of translation and rotation (x y z qw qx qy qz)
"""
# convert input to numpy
c2w = to_numpy(c2w)
xyz = c2w[:3, -1]
rot = Rotation.from_matrix(c2w[:3, :3])
qx, qy, qz, qw = rot.as_quat()
tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]])
return tum_pose
def get_tum_poses(poses):
"""
poses: list of 4x4 arrays
"""
tt = np.arange(len(poses)).astype(float)
tum_poses = [c2w_to_tumpose(p) for p in poses]
tum_poses = np.stack(tum_poses, 0)
return [tum_poses, tt]
def save_tum_poses(poses, path):
traj = get_tum_poses(poses)
save_trajectory_tum_format(traj, path)
return traj[0] # return the poses
def save_focals(cam_dict, path):
# convert focal to txt
focals = cam_dict["focal"]
np.savetxt(path, focals, fmt="%.6f")
return focals
def save_intrinsics(cam_dict, path):
K_raw = np.eye(3)[None].repeat(len(cam_dict["focal"]), axis=0)
K_raw[:, 0, 0] = cam_dict["focal"]
K_raw[:, 1, 1] = cam_dict["focal"]
K_raw[:, :2, 2] = cam_dict["pp"]
K = K_raw.reshape(-1, 9)
np.savetxt(path, K, fmt="%.6f")
return K_raw
def save_conf_maps(conf, path):
for i, c in enumerate(conf):
np.save(f"{path}/conf_{i}.npy", c.detach().cpu().numpy())
return conf
def save_rgb_imgs(colors, path):
imgs = colors
for i, img in enumerate(imgs):
# convert from rgb to bgr
iio.imwrite(
f"{path}/frame_{i:04d}.jpg", (img.cpu().numpy() * 255).astype(np.uint8)
)
return imgs
def save_depth_maps(pts3ds_self, path, conf_self=None):
depth_maps = torch.stack([pts3d_self[..., -1] for pts3d_self in pts3ds_self], 0)
min_depth = depth_maps.min() # float(torch.quantile(out, 0.01))
max_depth = depth_maps.max() # float(torch.quantile(out, 0.99))
colored_depth = colorize(
depth_maps,
cmap_name="Spectral_r",
range=(min_depth, max_depth),
append_cbar=True,
)
images = []
if conf_self is not None:
conf_selfs = torch.concat(conf_self, 0)
min_conf = torch.log(conf_selfs.min()) # float(torch.quantile(out, 0.01))
max_conf = torch.log(conf_selfs.max()) # float(torch.quantile(out, 0.99))
colored_conf = colorize(
torch.log(conf_selfs),
cmap_name="jet",
range=(min_conf, max_conf),
append_cbar=True,
)
for i, depth_map in enumerate(colored_depth):
# Apply color map to depth map
img_path = f"{path}/frame_{(i):04d}.png"
if conf_self is None:
to_save = (depth_map * 255).detach().cpu().numpy().astype(np.uint8)
else:
to_save = torch.cat([depth_map, colored_conf[i]], dim=1)
to_save = (to_save * 255).detach().cpu().numpy().astype(np.uint8)
iio.imwrite(img_path, to_save)
images.append(Image.open(img_path))
np.save(f"{path}/frame_{(i):04d}.npy", depth_maps[i].detach().cpu().numpy())
images[0].save(
f"{path}/_depth_maps.gif",
save_all=True,
append_images=images[1:],
duration=100,
loop=0,
)
return depth_maps
def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2):
"""
:param w: pixels
:param h: pixels
:param vmin: min value
:param vmax: max value
:param cmap_name:
:param label
:return:
"""
fig = Figure(figsize=(2, 8), dpi=100)
fig.subplots_adjust(right=1.5)
canvas = FigureCanvasAgg(fig)
# Do some plotting.
ax = fig.add_subplot(111)
cmap = cm.get_cmap(cmap_name)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
tick_cnt = 6
tick_loc = np.linspace(vmin, vmax, tick_cnt)
cb1 = mpl.colorbar.ColorbarBase(
ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical"
)
tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
if cbar_precision == 0:
tick_label = [x[:-2] for x in tick_label]
cb1.set_ticklabels(tick_label)
cb1.ax.tick_params(labelsize=18, rotation=0)
if label is not None:
cb1.set_label(label)
# fig.tight_layout()
canvas.draw()
s, (width, height) = canvas.print_to_buffer()
im = np.frombuffer(s, np.uint8).reshape((height, width, 4))
im = im[:, :, :3].astype(np.float32) / 255.0
if h != im.shape[0]:
w = int(im.shape[1] / im.shape[0] * h)
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)
return im
def colorize_np(
x,
cmap_name="jet",
mask=None,
range=None,
append_cbar=False,
cbar_in_image=False,
cbar_precision=2,
):
"""
turn a grayscale image into a color image
:param x: input grayscale, [H, W]
:param cmap_name: the colorization method
:param mask: the mask image, [H, W]
:param range: the range for scaling, automatic if None, [min, max]
:param append_cbar: if append the color bar
:param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
:return: colorized image, [H, W]
"""
if range is not None:
vmin, vmax = range
elif mask is not None:
# vmin, vmax = np.percentile(x[mask], (2, 100))
vmin = np.min(x[mask][np.nonzero(x[mask])])
vmax = np.max(x[mask])
# vmin = vmin - np.abs(vmin) * 0.01
x[np.logical_not(mask)] = vmin
# print(vmin, vmax)
else:
vmin, vmax = np.percentile(x, (1, 100))
vmax += 1e-6
x = np.clip(x, vmin, vmax)
x = (x - vmin) / (vmax - vmin)
# x = np.clip(x, 0., 1.)
cmap = cm.get_cmap(cmap_name)
x_new = cmap(x)[:, :, :3]
if mask is not None:
mask = np.float32(mask[:, :, np.newaxis])
x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask)
cbar = get_vertical_colorbar(
h=x.shape[0],
vmin=vmin,
vmax=vmax,
cmap_name=cmap_name,
cbar_precision=cbar_precision,
)
if append_cbar:
if cbar_in_image:
x_new[:, -cbar.shape[1] :, :] = cbar
else:
x_new = np.concatenate(
(x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1
)
return x_new
else:
return x_new
# tensor
def colorize(
x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False
):
"""
turn a grayscale image into a color image
:param x: torch.Tensor, grayscale image, [H, W] or [B, H, W]
:param mask: torch.Tensor or None, mask image, [H, W] or [B, H, W] or None
"""
device = x.device
x = x.cpu().numpy()
if mask is not None:
mask = mask.cpu().numpy() > 0.99
kernel = np.ones((3, 3), np.uint8)
if x.ndim == 2:
x = x[None]
if mask is not None:
mask = mask[None]
out = []
for x_ in x:
if mask is not None:
mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)
x_ = colorize_np(x_, cmap_name, mask, range, append_cbar, cbar_in_image)
out.append(torch.from_numpy(x_).to(device).float())
out = torch.stack(out).squeeze(0)
return out
|