File size: 16,703 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import os
import sys

sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
import math
import cv2
import numpy as np
import torch
import argparse

from copy import deepcopy
from eval.relpose.metadata import dataset_metadata
from eval.relpose.utils import *

from accelerate import PartialState
from add_ckpt_path import add_path_to_dust3r

from tqdm import tqdm


def get_args_parser():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--weights",
        type=str,
        help="path to the model weights",
        default="",
    )

    parser.add_argument("--device", type=str, default="cuda", help="pytorch device")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="",
        help="value for outdir",
    )
    parser.add_argument(
        "--no_crop", type=bool, default=True, help="whether to crop input data"
    )

    parser.add_argument(
        "--eval_dataset",
        type=str,
        default="sintel",
        choices=list(dataset_metadata.keys()),
    )
    parser.add_argument("--size", type=int, default="224")

    parser.add_argument(
        "--pose_eval_stride", default=1, type=int, help="stride for pose evaluation"
    )
    parser.add_argument("--shuffle", action="store_true", default=False)
    parser.add_argument(
        "--full_seq",
        action="store_true",
        default=False,
        help="use full sequence for pose evaluation",
    )
    parser.add_argument(
        "--seq_list",
        nargs="+",
        default=None,
        help="list of sequences for pose evaluation",
    )

    parser.add_argument("--revisit", type=int, default=1)
    parser.add_argument("--freeze_state", action="store_true", default=False)
    parser.add_argument("--solve_pose", action="store_true", default=False)
    return parser


def eval_pose_estimation(args, model, save_dir=None):
    metadata = dataset_metadata.get(args.eval_dataset)
    img_path = metadata["img_path"]
    mask_path = metadata["mask_path"]

    ate_mean, rpe_trans_mean, rpe_rot_mean = eval_pose_estimation_dist(
        args, model, save_dir=save_dir, img_path=img_path, mask_path=mask_path
    )
    return ate_mean, rpe_trans_mean, rpe_rot_mean


def eval_pose_estimation_dist(args, model, img_path, save_dir=None, mask_path=None):
    from dust3r.inference import inference

    metadata = dataset_metadata.get(args.eval_dataset)
    anno_path = metadata.get("anno_path", None)

    seq_list = args.seq_list
    if seq_list is None:
        if metadata.get("full_seq", False):
            args.full_seq = True
        else:
            seq_list = metadata.get("seq_list", [])
        if args.full_seq:
            seq_list = os.listdir(img_path)
            seq_list = [
                seq for seq in seq_list if os.path.isdir(os.path.join(img_path, seq))
            ]
        seq_list = sorted(seq_list)

    if save_dir is None:
        save_dir = args.output_dir

    distributed_state = PartialState()
    model.to(distributed_state.device)
    device = distributed_state.device

    with distributed_state.split_between_processes(seq_list) as seqs:
        ate_list = []
        rpe_trans_list = []
        rpe_rot_list = []
        load_img_size = args.size
        error_log_path = f"{save_dir}/_error_log_{distributed_state.process_index}.txt"  # Unique log file per process
        bug = False
        for seq in tqdm(seqs):
            try:
                dir_path = metadata["dir_path_func"](img_path, seq)

                # Handle skip_condition
                skip_condition = metadata.get("skip_condition", None)
                if skip_condition is not None and skip_condition(save_dir, seq):
                    continue

                mask_path_seq_func = metadata.get(
                    "mask_path_seq_func", lambda mask_path, seq: None
                )
                mask_path_seq = mask_path_seq_func(mask_path, seq)

                filelist = [
                    os.path.join(dir_path, name) for name in os.listdir(dir_path)
                ]
                filelist.sort()
                filelist = filelist[:: args.pose_eval_stride]

                views = prepare_input(
                    filelist,
                    [True for _ in filelist],
                    size=load_img_size,
                    crop=not args.no_crop,
                    revisit=args.revisit,
                    update=not args.freeze_state,
                )
                outputs, _ = inference(views, model, device)

                (
                    colors,
                    pts3ds_self,
                    pts3ds_other,
                    conf_self,
                    conf_other,
                    cam_dict,
                    pr_poses,
                ) = prepare_output(
                    outputs, revisit=args.revisit, solve_pose=args.solve_pose
                )

                pred_traj = get_tum_poses(pr_poses)
                os.makedirs(f"{save_dir}/{seq}", exist_ok=True)
                save_tum_poses(pr_poses, f"{save_dir}/{seq}/pred_traj.txt")
                save_focals(cam_dict, f"{save_dir}/{seq}/pred_focal.txt")
                save_intrinsics(cam_dict, f"{save_dir}/{seq}/pred_intrinsics.txt")
                # save_depth_maps(pts3ds_self,f'{save_dir}/{seq}', conf_self=conf_self)
                # save_conf_maps(conf_self,f'{save_dir}/{seq}')
                # save_rgb_imgs(colors,f'{save_dir}/{seq}')

                gt_traj_file = metadata["gt_traj_func"](img_path, anno_path, seq)
                traj_format = metadata.get("traj_format", None)

                if args.eval_dataset == "sintel":
                    gt_traj = load_traj(
                        gt_traj_file=gt_traj_file, stride=args.pose_eval_stride
                    )
                elif traj_format is not None:
                    gt_traj = load_traj(
                        gt_traj_file=gt_traj_file,
                        traj_format=traj_format,
                        stride=args.pose_eval_stride,
                    )
                else:
                    gt_traj = None

                if gt_traj is not None:
                    ate, rpe_trans, rpe_rot = eval_metrics(
                        pred_traj,
                        gt_traj,
                        seq=seq,
                        filename=f"{save_dir}/{seq}_eval_metric.txt",
                    )
                    plot_trajectory(
                        pred_traj, gt_traj, title=seq, filename=f"{save_dir}/{seq}.png"
                    )
                else:
                    ate, rpe_trans, rpe_rot = 0, 0, 0
                    bug = True

                ate_list.append(ate)
                rpe_trans_list.append(rpe_trans)
                rpe_rot_list.append(rpe_rot)

                # Write to error log after each sequence
                with open(error_log_path, "a") as f:
                    f.write(
                        f"{args.eval_dataset}-{seq: <16} | ATE: {ate:.5f}, RPE trans: {rpe_trans:.5f}, RPE rot: {rpe_rot:.5f}\n"
                    )
                    f.write(f"{ate:.5f}\n")
                    f.write(f"{rpe_trans:.5f}\n")
                    f.write(f"{rpe_rot:.5f}\n")

            except Exception as e:
                if "out of memory" in str(e):
                    # Handle OOM
                    torch.cuda.empty_cache()  # Clear the CUDA memory
                    with open(error_log_path, "a") as f:
                        f.write(
                            f"OOM error in sequence {seq}, skipping this sequence.\n"
                        )
                    print(f"OOM error in sequence {seq}, skipping...")
                elif "Degenerate covariance rank" in str(
                    e
                ) or "Eigenvalues did not converge" in str(e):
                    # Handle Degenerate covariance rank exception and Eigenvalues did not converge exception
                    with open(error_log_path, "a") as f:
                        f.write(f"Exception in sequence {seq}: {str(e)}\n")
                    print(f"Traj evaluation error in sequence {seq}, skipping.")
                else:
                    raise e  # Rethrow if it's not an expected exception

    distributed_state.wait_for_everyone()

    results = process_directory(save_dir)
    avg_ate, avg_rpe_trans, avg_rpe_rot = calculate_averages(results)

    # Write the averages to the error log (only on the main process)
    if distributed_state.is_main_process:
        with open(f"{save_dir}/_error_log.txt", "a") as f:
            # Copy the error log from each process to the main error log
            for i in range(distributed_state.num_processes):
                if not os.path.exists(f"{save_dir}/_error_log_{i}.txt"):
                    break
                with open(f"{save_dir}/_error_log_{i}.txt", "r") as f_sub:
                    f.write(f_sub.read())
            f.write(
                f"Average ATE: {avg_ate:.5f}, Average RPE trans: {avg_rpe_trans:.5f}, Average RPE rot: {avg_rpe_rot:.5f}\n"
            )

    return avg_ate, avg_rpe_trans, avg_rpe_rot


if __name__ == "__main__":
    args = get_args_parser()
    args = args.parse_args()
    add_path_to_dust3r(args.weights)
    from dust3r.utils.image import load_images_for_eval as load_images
    from dust3r.post_process import estimate_focal_knowing_depth
    from dust3r.model import ARCroco3DStereo
    from dust3r.utils.camera import pose_encoding_to_camera
    from dust3r.utils.geometry import weighted_procrustes, geotrf

    args.full_seq = False
    args.no_crop = False

    def recover_cam_params(pts3ds_self, pts3ds_other, conf_self, conf_other):
        B, H, W, _ = pts3ds_self.shape
        pp = (
            torch.tensor([W // 2, H // 2], device=pts3ds_self.device)
            .float()
            .repeat(B, 1)
            .reshape(B, 1, 2)
        )
        focal = estimate_focal_knowing_depth(pts3ds_self, pp, focal_mode="weiszfeld")

        pts3ds_self = pts3ds_self.reshape(B, -1, 3)
        pts3ds_other = pts3ds_other.reshape(B, -1, 3)
        conf_self = conf_self.reshape(B, -1)
        conf_other = conf_other.reshape(B, -1)
        # weighted procrustes
        c2w = weighted_procrustes(
            pts3ds_self,
            pts3ds_other,
            torch.log(conf_self) * torch.log(conf_other),
            use_weights=True,
            return_T=True,
        )
        return c2w, focal, pp.reshape(B, 2)

    def prepare_input(
        img_paths,
        img_mask,
        size,
        raymaps=None,
        raymap_mask=None,
        revisit=1,
        update=True,
        crop=True,
    ):
        images = load_images(img_paths, size=size, crop=crop)
        views = []
        if raymaps is None and raymap_mask is None:
            num_views = len(images)

            for i in range(num_views):
                view = {
                    "img": images[i]["img"],
                    "ray_map": torch.full(
                        (
                            images[i]["img"].shape[0],
                            6,
                            images[i]["img"].shape[-2],
                            images[i]["img"].shape[-1],
                        ),
                        torch.nan,
                    ),
                    "true_shape": torch.from_numpy(images[i]["true_shape"]),
                    "idx": i,
                    "instance": str(i),
                    "camera_pose": torch.from_numpy(
                        np.eye(4).astype(np.float32)
                    ).unsqueeze(0),
                    "img_mask": torch.tensor(True).unsqueeze(0),
                    "ray_mask": torch.tensor(False).unsqueeze(0),
                    "update": torch.tensor(True).unsqueeze(0),
                    "reset": torch.tensor(False).unsqueeze(0),
                }
                views.append(view)
        else:

            num_views = len(images) + len(raymaps)
            assert len(img_mask) == len(raymap_mask) == num_views
            assert sum(img_mask) == len(images) and sum(raymap_mask) == len(raymaps)

            j = 0
            k = 0
            for i in range(num_views):
                view = {
                    "img": (
                        images[j]["img"]
                        if img_mask[i]
                        else torch.full_like(images[0]["img"], torch.nan)
                    ),
                    "ray_map": (
                        raymaps[k]
                        if raymap_mask[i]
                        else torch.full_like(raymaps[0], torch.nan)
                    ),
                    "true_shape": (
                        torch.from_numpy(images[j]["true_shape"])
                        if img_mask[i]
                        else torch.from_numpy(np.int32([raymaps[k].shape[1:-1][::-1]]))
                    ),
                    "idx": i,
                    "instance": str(i),
                    "camera_pose": torch.from_numpy(
                        np.eye(4).astype(np.float32)
                    ).unsqueeze(0),
                    "img_mask": torch.tensor(img_mask[i]).unsqueeze(0),
                    "ray_mask": torch.tensor(raymap_mask[i]).unsqueeze(0),
                    "update": torch.tensor(img_mask[i]).unsqueeze(0),
                    "reset": torch.tensor(False).unsqueeze(0),
                }
                if img_mask[i]:
                    j += 1
                if raymap_mask[i]:
                    k += 1
                views.append(view)
            assert j == len(images) and k == len(raymaps)

        if revisit > 1:
            # repeat input for 'revisit' times
            new_views = []
            for r in range(revisit):
                for i in range(len(views)):
                    new_view = deepcopy(views[i])
                    new_view["idx"] = r * len(views) + i
                    new_view["instance"] = str(r * len(views) + i)
                    if r > 0:
                        if not update:
                            new_view["update"] = torch.tensor(False).unsqueeze(0)
                    new_views.append(new_view)
            return new_views
        return views

    def prepare_output(outputs, revisit=1, solve_pose=False):
        valid_length = len(outputs["pred"]) // revisit
        outputs["pred"] = outputs["pred"][-valid_length:]
        outputs["views"] = outputs["views"][-valid_length:]

        if solve_pose:
            pts3ds_self = [
                output["pts3d_in_self_view"].cpu() for output in outputs["pred"]
            ]
            pts3ds_other = [
                output["pts3d_in_other_view"].cpu() for output in outputs["pred"]
            ]
            conf_self = [output["conf_self"].cpu() for output in outputs["pred"]]
            conf_other = [output["conf"].cpu() for output in outputs["pred"]]
            pr_poses, focal, pp = recover_cam_params(
                torch.cat(pts3ds_self, 0),
                torch.cat(pts3ds_other, 0),
                torch.cat(conf_self, 0),
                torch.cat(conf_other, 0),
            )
            pts3ds_self = torch.cat(pts3ds_self, 0)
        else:

            pts3ds_self = [
                output["pts3d_in_self_view"].cpu() for output in outputs["pred"]
            ]
            pts3ds_other = [
                output["pts3d_in_other_view"].cpu() for output in outputs["pred"]
            ]
            conf_self = [output["conf_self"].cpu() for output in outputs["pred"]]
            conf_other = [output["conf"].cpu() for output in outputs["pred"]]
            pts3ds_self = torch.cat(pts3ds_self, 0)
            pr_poses = [
                pose_encoding_to_camera(pred["camera_pose"].clone()).cpu()
                for pred in outputs["pred"]
            ]
            pr_poses = torch.cat(pr_poses, 0)

            B, H, W, _ = pts3ds_self.shape
            pp = (
                torch.tensor([W // 2, H // 2], device=pts3ds_self.device)
                .float()
                .repeat(B, 1)
                .reshape(B, 2)
            )
            focal = estimate_focal_knowing_depth(
                pts3ds_self, pp, focal_mode="weiszfeld"
            )

        colors = [0.5 * (output["rgb"][0] + 1.0) for output in outputs["pred"]]
        cam_dict = {
            "focal": focal.cpu().numpy(),
            "pp": pp.cpu().numpy(),
        }
        return (
            colors,
            pts3ds_self,
            pts3ds_other,
            conf_self,
            conf_other,
            cam_dict,
            pr_poses,
        )

    model = ARCroco3DStereo.from_pretrained(args.weights)
    eval_pose_estimation(args, model, save_dir=args.output_dir)