File size: 6,642 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import glob
from tqdm import tqdm

# Define the merged dataset metadata dictionary
dataset_metadata = {
    "sun_rgbd": {
        "img_path": "data/sun_rgbd/image/test",
        "mask_path": None,
    },
    "davis": {
        "img_path": "data/davis/DAVIS/JPEGImages/480p",
        "mask_path": "data/davis/DAVIS/masked_images/480p",
        "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
        "gt_traj_func": lambda img_path, anno_path, seq: None,
        "traj_format": None,
        "seq_list": None,
        "full_seq": True,
        "mask_path_seq_func": lambda mask_path, seq: os.path.join(mask_path, seq),
        "skip_condition": None,
        "process_func": None,  # Not used in mono depth estimation
    },
    "kitti": {
        "img_path": "data/kitti/depth_selection/val_selection_cropped/image_gathered",  # Default path
        "mask_path": None,
        "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
        "gt_traj_func": lambda img_path, anno_path, seq: None,
        "traj_format": None,
        "seq_list": None,
        "full_seq": True,
        "mask_path_seq_func": lambda mask_path, seq: None,
        "skip_condition": None,
        "process_func": lambda args, img_path: process_kitti(args, img_path),
    },
    "bonn": {
        "img_path": "data/bonn/rgbd_bonn_dataset",
        "mask_path": None,
        "dir_path_func": lambda img_path, seq: os.path.join(
            img_path, f"rgbd_bonn_{seq}", "rgb_110"
        ),
        "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
            img_path, f"rgbd_bonn_{seq}", "groundtruth_110.txt"
        ),
        "traj_format": "tum",
        "seq_list": ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"],
        "full_seq": False,
        "mask_path_seq_func": lambda mask_path, seq: None,
        "skip_condition": None,
        "process_func": lambda args, img_path: process_bonn(args, img_path),
    },
    "nyu": {
        "img_path": "data/nyu-v2/val/nyu_images",
        "mask_path": None,
        "process_func": lambda args, img_path: process_nyu(args, img_path),
    },
    "scannet": {
        "img_path": "data/scannetv2",
        "mask_path": None,
        "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "color_90"),
        "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
            img_path, seq, "pose_90.txt"
        ),
        "traj_format": "replica",
        "seq_list": None,
        "full_seq": True,
        "mask_path_seq_func": lambda mask_path, seq: None,
        "skip_condition": None,  # lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
        "process_func": lambda args, img_path: process_scannet(args, img_path),
    },
    "tum": {
        "img_path": "data/tum",
        "mask_path": None,
        "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "rgb_90"),
        "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
            img_path, seq, "groundtruth_90.txt"
        ),
        "traj_format": "tum",
        "seq_list": None,
        "full_seq": True,
        "mask_path_seq_func": lambda mask_path, seq: None,
        "skip_condition": None,
        "process_func": None,
    },
    "sintel": {
        "img_path": "data/sintel/training/final",
        "anno_path": "data/sintel/training/camdata_left",
        "mask_path": None,
        "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
        "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(anno_path, seq),
        "traj_format": None,
        "seq_list": [
            "alley_2",
            "ambush_4",
            "ambush_5",
            "ambush_6",
            "cave_2",
            "cave_4",
            "market_2",
            "market_5",
            "market_6",
            "shaman_3",
            "sleeping_1",
            "sleeping_2",
            "temple_2",
            "temple_3",
        ],
        "full_seq": False,
        "mask_path_seq_func": lambda mask_path, seq: None,
        "skip_condition": None,
        "process_func": lambda args, img_path: process_sintel(args, img_path),
    },
}


# Define processing functions for each dataset
def process_kitti(args, img_path):
    for dir in tqdm(sorted(glob.glob(f"{img_path}/*"))):
        filelist = sorted(glob.glob(f"{dir}/*.png"))
        save_dir = f"{args.output_dir}/{os.path.basename(dir)}"
        yield filelist, save_dir


def process_bonn(args, img_path):
    if args.full_seq:
        for dir in tqdm(sorted(glob.glob(f"{img_path}/*/"))):
            filelist = sorted(glob.glob(f"{dir}/rgb/*.png"))
            save_dir = f"{args.output_dir}/{os.path.basename(os.path.dirname(dir))}"
            yield filelist, save_dir
    else:
        seq_list = (
            ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"]
            if args.seq_list is None
            else args.seq_list
        )
        for seq in tqdm(seq_list):
            filelist = sorted(glob.glob(f"{img_path}/rgbd_bonn_{seq}/rgb_110/*.png"))
            save_dir = f"{args.output_dir}/{seq}"
            yield filelist, save_dir


def process_sunrgbd(args, img_path):
    filelist = sorted(glob.glob(f"{img_path}/*.jpg"))
    save_dir = f"{args.output_dir}"
    yield filelist, save_dir


def process_nyu(args, img_path):
    filelist = sorted(glob.glob(f"{img_path}/*.png"))
    save_dir = f"{args.output_dir}"
    yield filelist, save_dir


def process_scannet(args, img_path):
    seq_list = sorted(glob.glob(f"{img_path}/*"))
    for seq in tqdm(seq_list):
        filelist = sorted(glob.glob(f"{seq}/color_90/*.jpg"))
        save_dir = f"{args.output_dir}/{os.path.basename(seq)}"
        yield filelist, save_dir


def process_sintel(args, img_path):
    if args.full_seq:
        for dir in tqdm(sorted(glob.glob(f"{img_path}/*/"))):
            filelist = sorted(glob.glob(f"{dir}/*.png"))
            save_dir = f"{args.output_dir}/{os.path.basename(os.path.dirname(dir))}"
            yield filelist, save_dir
    else:
        seq_list = [
            "alley_2",
            "ambush_4",
            "ambush_5",
            "ambush_6",
            "cave_2",
            "cave_4",
            "market_2",
            "market_5",
            "market_6",
            "shaman_3",
            "sleeping_1",
            "sleeping_2",
            "temple_2",
            "temple_3",
        ]
        for seq in tqdm(seq_list):
            filelist = sorted(glob.glob(f"{img_path}/{seq}/*.png"))
            save_dir = f"{args.output_dir}/{seq}"
            yield filelist, save_dir