File size: 7,360 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import sys

sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
from eval.monodepth.tools import depth_evaluation
import numpy as np
import json
from tqdm import tqdm
import glob
import cv2
from eval.monodepth.metadata import dataset_metadata
import argparse
from PIL import Image

TAG_FLOAT = 202021.25


def depth_read_sintel(filename):
    """Read depth data from file, return as numpy array."""
    f = open(filename, "rb")
    check = np.fromfile(f, dtype=np.float32, count=1)[0]
    assert (
        check == TAG_FLOAT
    ), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
        TAG_FLOAT, check
    )
    width = np.fromfile(f, dtype=np.int32, count=1)[0]
    height = np.fromfile(f, dtype=np.int32, count=1)[0]
    size = width * height
    assert (
        width > 0 and height > 0 and size > 1 and size < 100000000
    ), " depth_read:: Wrong input size (width = {0}, height = {1}).".format(
        width, height
    )
    depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
    return depth


def depth_read_bonn(filename):
    # loads depth map D from png file
    # and returns it as a numpy array
    depth_png = np.asarray(Image.open(filename))
    # make sure we have a proper 16bit depth map here.. not 8bit!
    assert np.max(depth_png) > 255
    depth = depth_png.astype(np.float64) / 5000.0
    depth[depth_png == 0] = -1.0
    return depth


def depth_read_kitti(filename):
    # loads depth map D from png file
    # and returns it as a numpy array,
    # for details see readme.txt
    img_pil = Image.open(filename)
    depth_png = np.array(img_pil, dtype=int)
    # make sure we have a proper 16bit depth map here.. not 8bit!
    assert np.max(depth_png) > 255

    depth = depth_png.astype(float) / 256.0
    depth[depth_png == 0] = -1.0
    return depth


def get_gt_depth(filename, dataset):
    if dataset == "sintel":
        return depth_read_sintel(filename)
    elif dataset == "bonn":
        return depth_read_bonn(filename)
    elif dataset == "kitti":
        return depth_read_kitti(filename)
    elif dataset == "nyu":
        return np.load(filename)
    else:
        raise NotImplementedError


def get_args_parser():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--output_dir",
        type=str,
        default="",
        help="value for outdir",
    )
    parser.add_argument(
        "--eval_dataset", type=str, default="nyu", choices=list(dataset_metadata.keys())
    )
    return parser


def main(args):
    if args.eval_dataset == "nyu":
        depth_pathes = glob.glob("data/nyu-v2/val/nyu_depths/*.npy")
        depth_pathes = sorted(depth_pathes)
        pred_pathes = glob.glob(
            f"{args.output_dir}/*.npy"
        )  # TODO: update the path to your prediction
        pred_pathes = sorted(pred_pathes)
    elif args.eval_dataset == "sintel":
        pred_pathes = glob.glob(
            f"{args.output_dir}/*/*.npy"
        )  # TODO: update the path to your prediction
        pred_pathes = sorted(pred_pathes)
        full = len(pred_pathes) > 643
        if full:
            depth_pathes = glob.glob(f"data/sintel/training/depth/*/*.dpt")
            depth_pathes = sorted(depth_pathes)
        else:
            seq_list = [
                "alley_2",
                "ambush_4",
                "ambush_5",
                "ambush_6",
                "cave_2",
                "cave_4",
                "market_2",
                "market_5",
                "market_6",
                "shaman_3",
                "sleeping_1",
                "sleeping_2",
                "temple_2",
                "temple_3",
            ]
            depth_pathes_folder = [
                f"data/sintel/training/depth/{seq}" for seq in seq_list
            ]
            depth_pathes = []
            for depth_pathes_folder_i in depth_pathes_folder:
                depth_pathes += glob.glob(depth_pathes_folder_i + "/*.dpt")
            depth_pathes = sorted(depth_pathes)
    elif args.eval_dataset == "bonn":
        seq_list = ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"]
        img_pathes_folder = [
            f"data/bonn/rgbd_bonn_dataset/rgbd_bonn_{seq}/rgb_110/*.png"
            for seq in seq_list
        ]
        img_pathes = []
        for img_pathes_folder_i in img_pathes_folder:
            img_pathes += glob.glob(img_pathes_folder_i)
        img_pathes = sorted(img_pathes)
        depth_pathes_folder = [
            f"data/bonn/rgbd_bonn_dataset/rgbd_bonn_{seq}/depth_110/*.png"
            for seq in seq_list
        ]
        depth_pathes = []
        for depth_pathes_folder_i in depth_pathes_folder:
            depth_pathes += glob.glob(depth_pathes_folder_i)
        depth_pathes = sorted(depth_pathes)
        pred_pathes = glob.glob(
            f"{args.output_dir}/*/*.npy"
        )  # TODO: update the path to your prediction
        pred_pathes = sorted(pred_pathes)
    elif args.eval_dataset == "kitti":
        depth_pathes = glob.glob(
            "data/kitti/depth_selection/val_selection_cropped/groundtruth_depth_gathered/*/*.png"
        )
        depth_pathes = sorted(depth_pathes)
        pred_pathes = glob.glob(
            f"{args.output_dir}/*/*depth.npy"
        )  # TODO: update the path to your prediction
        pred_pathes = sorted(pred_pathes)
    else:
        raise NotImplementedError

    gathered_depth_metrics = []
    for idx in tqdm(range(len(depth_pathes))):
        pred_depth = np.load(pred_pathes[idx])
        gt_depth = get_gt_depth(depth_pathes[idx], args.eval_dataset)
        pred_depth = cv2.resize(
            pred_depth,
            (gt_depth.shape[1], gt_depth.shape[0]),
            interpolation=cv2.INTER_CUBIC,
        )
        if args.eval_dataset == "nyu":
            depth_results, error_map, depth_predict, depth_gt = depth_evaluation(
                pred_depth, gt_depth, max_depth=None, lr=1e-3
            )
        elif args.eval_dataset == "sintel":
            depth_results, error_map, depth_predict, depth_gt = depth_evaluation(
                pred_depth, gt_depth, max_depth=70, use_gpu=True, post_clip_max=70
            )
        elif args.eval_dataset == "bonn":
            depth_results, error_map, depth_predict, depth_gt = depth_evaluation(
                pred_depth, gt_depth, max_depth=70, use_gpu=True
            )
        elif args.eval_dataset == "kitti":
            depth_results, error_map, depth_predict, depth_gt = depth_evaluation(
                pred_depth, gt_depth, max_depth=None, use_gpu=True
            )
        gathered_depth_metrics.append(depth_results)

    depth_log_path = os.path.join(args.output_dir, "metric.json")
    average_metrics = {
        key: np.average(
            [metrics[key] for metrics in gathered_depth_metrics],
            weights=[metrics["valid_pixels"] for metrics in gathered_depth_metrics],
        )
        for key in gathered_depth_metrics[0].keys()
        if key != "valid_pixels"
    }
    print(f"{args.eval_dataset} - Average depth evaluation metrics:", average_metrics)
    with open(depth_log_path, "w") as f:
        f.write(json.dumps(average_metrics))


if __name__ == "__main__":
    args = get_args_parser()
    args = args.parse_args()
    main(args)