File size: 7,901 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python3
"""
Preprocess Script for UrbanSyn Dataset

This script:
  1. Reads RGB, depth (EXR), and semantic segmentation (class) files from an UrbanSyn dataset directory.
  2. Retrieves camera intrinsics from a JSON metadata file.
  3. Rescales images, depth maps, and masks to a fixed resolution (e.g., 640×480).
  4. Saves processed data (RGB, .npy depth, .png sky mask, and .npz intrinsics) in an organized structure.

Usage:
    python preprocess_urbansyn.py \
        --input_dir /path/to/data_urbansyn \
        --output_dir /path/to/processed_urbansyn
"""

import os
import json
import argparse
import shutil
from concurrent.futures import ProcessPoolExecutor, as_completed
import cv2
import numpy as np
from tqdm import tqdm
from PIL import Image

# Make sure OpenCV EXR support is enabled
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"

# Custom "cropping" module (ensure cropping.py is available/installed)
import cropping


def process_basename(
    basename,
    rgb_dir,
    depth_dir,
    class_dir,
    cam_info,
    out_rgb_dir,
    out_depth_dir,
    out_mask_dir,
    out_cam_dir,
):
    """
    Process a single file triplet (RGB, depth, class) for a given basename.

    Args:
        basename (str): Base name without file extension (e.g., 'image_0001').
        rgb_dir (str): Directory containing RGB .png files.
        depth_dir (str): Directory containing .exr depth files.
        class_dir (str): Directory containing class .png files (semantic segmentation).
        cam_info (dict): Dictionary with camera metadata (focal length, sensor size).
        out_rgb_dir (str): Output directory for rescaled RGB images.
        out_depth_dir (str): Output directory for rescaled depth files.
        out_mask_dir (str): Output directory for sky masks.
        out_cam_dir (str): Output directory for camera intrinsics.

    Returns:
        str or None:
            - Returns None if successful.
            - Returns an error message if something fails.
    """

    # Construct output file paths
    out_img_path = os.path.join(out_rgb_dir, f"{basename}.png")
    out_depth_path = os.path.join(out_depth_dir, f"{basename}.npy")
    out_mask_path = os.path.join(out_mask_dir, f"{basename}.png")
    out_cam_path = os.path.join(out_cam_dir, f"{basename}.npz")

    # Skip if already processed
    if (
        os.path.exists(out_img_path)
        and os.path.exists(out_depth_path)
        and os.path.exists(out_mask_path)
        and os.path.exists(out_cam_path)
    ):
        return None

    try:
        # Build file paths
        img_file = os.path.join(rgb_dir, f"{basename}.png")
        depth_file = os.path.join(depth_dir, f'{basename.replace("rgb", "depth")}.exr')
        class_file = os.path.join(class_dir, basename.replace("rgb", "ss") + ".png")

        # 1. Read RGB image
        img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
        if img is None:
            return f"Error: Could not read image file {img_file}"
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # Convert BGR -> RGB
        H, W = img.shape[:2]

        # 2. Read depth from EXR
        depth = cv2.imread(depth_file, cv2.IMREAD_UNCHANGED)
        if depth is None:
            # Attempt fallback if there's a '.exr.1' file
            alt_exr_1 = depth_file + ".1"
            if os.path.exists(alt_exr_1):
                temp_exr = depth_file.replace(".exr", "_tmp.exr")
                os.rename(alt_exr_1, temp_exr)
                depth = cv2.imread(temp_exr, cv2.IMREAD_UNCHANGED)
                if depth is None:
                    return f"Error reading depth file (fallback) {temp_exr}"
                depth *= 1e5
            else:
                return f"Error reading depth file {depth_file}"
        else:
            depth *= 1e5  # multiply by 1e5, consistent with your original code

        # 3. Read class image, build sky mask
        cl = cv2.imread(class_file, cv2.IMREAD_UNCHANGED)
        if cl is None:
            return f"Error: Could not read class file {class_file}"
        sky_mask = (cl[..., 0] == 10).astype(np.uint8)  # class ID 10 => sky

        # 4. Build camera intrinsics
        f_mm = cam_info["focalLength_mm"]
        w_mm = cam_info["sensorWidth_mm"]
        h_mm = cam_info["sensorHeight_mm"]
        K = np.eye(3, dtype=np.float32)
        K[0, 0] = f_mm / w_mm * W
        K[1, 1] = f_mm / h_mm * H
        K[0, 2] = W / 2
        K[1, 2] = H / 2

        # 5. Combine depth + sky_mask in a single array for rescaling
        depth_with_mask = np.stack([depth, sky_mask], axis=-1)

        # 6. Rescale to desired size
        image_pil = Image.fromarray(img)
        image_rescaled, depth_with_mask_rescaled, K_rescaled = (
            cropping.rescale_image_depthmap(
                image_pil, depth_with_mask, K, output_resolution=(640, 480)
            )
        )

        # Write outputs
        image_rescaled.save(out_img_path)
        np.save(out_depth_path, depth_with_mask_rescaled[..., 0])
        cv2.imwrite(
            out_mask_path, (depth_with_mask_rescaled[..., 1] * 255).astype(np.uint8)
        )
        np.savez(out_cam_path, intrinsics=K_rescaled)

    except Exception as e:
        return f"Error processing {basename}: {e}"

    return None


def main():
    parser = argparse.ArgumentParser(
        description="Preprocess UrbanSyn dataset by loading RGB/Depth/Seg "
        "and rescaling them with camera intrinsics."
    )
    parser.add_argument(
        "--input_dir", required=True, help="Path to the UrbanSyn dataset directory."
    )
    parser.add_argument(
        "--output_dir",
        required=True,
        help="Path to the directory where processed data will be stored.",
    )
    args = parser.parse_args()

    input_dir = os.path.abspath(args.input_dir)
    output_dir = os.path.abspath(args.output_dir)
    os.makedirs(output_dir, exist_ok=True)

    # Define input subdirectories
    rgb_dir = os.path.join(input_dir, "rgb")
    depth_dir = os.path.join(input_dir, "depth")
    class_dir = os.path.join(input_dir, "ss")
    meta_file = os.path.join(input_dir, "camera_metadata.json")

    # Define output subdirectories
    out_rgb_dir = os.path.join(output_dir, "rgb")
    out_depth_dir = os.path.join(output_dir, "depth")
    out_mask_dir = os.path.join(output_dir, "sky_mask")
    out_cam_dir = os.path.join(output_dir, "cam")
    for d in [out_rgb_dir, out_depth_dir, out_mask_dir, out_cam_dir]:
        os.makedirs(d, exist_ok=True)

    # Gather basenames from RGB files
    basenames = sorted(
        [
            os.path.splitext(fname)[0]
            for fname in os.listdir(rgb_dir)
            if fname.endswith(".png")
        ]
    )
    if not basenames:
        print(f"No RGB .png files found in {rgb_dir}. Exiting.")
        return

    # Load camera metadata
    if not os.path.isfile(meta_file):
        print(f"Error: metadata file not found at {meta_file}. Exiting.")
        return

    with open(meta_file, "r") as f:
        cam_info_full = json.load(f)
        cam_info = cam_info_full["parameters"][0]["Camera"]

    # Process in parallel
    num_workers = max(1, os.cpu_count() or 1)
    with ProcessPoolExecutor(max_workers=num_workers) as executor:
        futures = {
            executor.submit(
                process_basename,
                basename,
                rgb_dir,
                depth_dir,
                class_dir,
                cam_info,
                out_rgb_dir,
                out_depth_dir,
                out_mask_dir,
                out_cam_dir,
            ): basename
            for basename in basenames
        }

        # Use tqdm for progress
        for future in tqdm(
            as_completed(futures), total=len(futures), desc="Processing UrbanSyn"
        ):
            error = future.result()
            if error:
                print(error)


if __name__ == "__main__":
    main()