Spaces:
Runtime error
Runtime error
File size: 11,072 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
#!/usr/bin/env python3
"""
Preprocessing Script for Spring Dataset
This script:
- Recursively processes each sequence in a given 'root_dir' for the Spring dataset.
- Reads RGB, disparity, optical flow files, and camera intrinsics/extrinsics.
- Converts disparity to depth, rescales images/flows, and writes processed results
(RGB, Depth, Cam intrinsics/poses, Forward Flow, Backward Flow) to 'out_dir'.
Usage:
python preprocess_spring.py \
--root_dir /path/to/spring/train \
--out_dir /path/to/processed_spring \
--baseline 0.065 \
--output_size 960 540
"""
import os
import argparse
import numpy as np
import cv2
from PIL import Image
import shutil
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
# Custom modules (adapt these imports to your actual module locations)
import flow_IO
import src.dust3r.datasets.utils.cropping as cropping
def rescale_flow(flow, size):
"""
Resize an optical flow field to a new resolution and scale its vectors accordingly.
Args:
flow (np.ndarray): Flow array of shape [H, W, 2].
size (tuple): Desired (width, height) for the resized flow.
Returns:
np.ndarray: Resized and scaled flow array.
"""
h, w = flow.shape[:2]
new_w, new_h = size
# Resize the flow map
flow_resized = cv2.resize(
flow.astype("float32"), (new_w, new_h), interpolation=cv2.INTER_LINEAR
)
# Scale the flow vectors to match the new resolution
flow_resized[..., 0] *= new_w / w
flow_resized[..., 1] *= new_h / h
return flow_resized
def get_depth(disparity, fx_baseline):
"""
Convert disparity to depth using baseline * focal_length / disparity.
Args:
disparity (np.ndarray): Disparity map (same resolution as the RGB).
fx_baseline (float): Product of the focal length (fx) and baseline.
Returns:
np.ndarray: Depth map.
"""
# Avoid divide-by-zero
depth = np.zeros_like(disparity, dtype=np.float32)
valid_mask = disparity != 0
depth[valid_mask] = fx_baseline / disparity[valid_mask]
return depth
def process_sequence(seq, root_dir, out_dir, baseline, output_size):
"""
Process a single sequence from the Spring dataset:
- Reads RGB frames, disparity maps, forward/backward optical flow, intrinsics, extrinsics.
- Converts disparity to depth.
- Rescales images, depth, and flow to the specified 'output_size'.
- Saves the processed data to the output directory.
Args:
seq (str): Name of the sequence (subdirectory).
root_dir (str): Root directory containing the Spring dataset sequences.
out_dir (str): Output directory to store processed files.
baseline (float): Stereo baseline for disparity-to-depth conversion (SPRING_BASELINE).
output_size (tuple): (width, height) for output images and flows.
Returns:
None or str:
- Returns None if processing is successful.
- Returns an error message (str) if an error occurs.
"""
seq_dir = os.path.join(root_dir, seq)
img_dir = os.path.join(seq_dir, "frame_left")
disp1_dir = os.path.join(seq_dir, "disp1_left")
fflow_dir = os.path.join(seq_dir, "flow_FW_left")
bflow_dir = os.path.join(seq_dir, "flow_BW_left")
intrinsics_path = os.path.join(seq_dir, "cam_data", "intrinsics.txt")
extrinsics_path = os.path.join(seq_dir, "cam_data", "extrinsics.txt")
try:
# Check required files/folders
for path in (
img_dir,
disp1_dir,
fflow_dir,
bflow_dir,
intrinsics_path,
extrinsics_path,
):
if not os.path.exists(path):
return f"Missing required path: {path}"
# Prepare output directories
out_img_dir = os.path.join(out_dir, seq, "rgb")
out_depth_dir = os.path.join(out_dir, seq, "depth")
out_cam_dir = os.path.join(out_dir, seq, "cam")
out_fflow_dir = os.path.join(out_dir, seq, "flow_forward")
out_bflow_dir = os.path.join(out_dir, seq, "flow_backward")
for d in [
out_img_dir,
out_depth_dir,
out_cam_dir,
out_fflow_dir,
out_bflow_dir,
]:
os.makedirs(d, exist_ok=True)
# Read camera data
all_intrinsics = np.loadtxt(intrinsics_path)
all_extrinsics = np.loadtxt(extrinsics_path)
# Collect filenames
rgbs = sorted([f for f in os.listdir(img_dir) if f.endswith(".png")])
disps = sorted([f for f in os.listdir(disp1_dir) if f.endswith(".dsp5")])
fflows = sorted([f for f in os.listdir(fflow_dir) if f.endswith(".flo5")])
bflows = sorted([f for f in os.listdir(bflow_dir) if f.endswith(".flo5")])
# Basic consistency check
if not (len(all_intrinsics) == len(all_extrinsics) == len(rgbs) == len(disps)):
return (
f"Inconsistent lengths in {seq}: "
f"Intrinsics {len(all_intrinsics)}, "
f"Extrinsics {len(all_extrinsics)}, "
f"RGBs {len(rgbs)}, "
f"Disparities {len(disps)}"
)
# Note: fflows+1 == len(all_intrinsics), bflows+1 == len(all_intrinsics)
# Check if already processed
if len(os.listdir(out_img_dir)) == len(rgbs):
return None # Already done, skip
# Process each frame
for i in tqdm(
range(len(all_intrinsics)), desc=f"Processing {seq}", leave=False
):
frame_num = i + 1 # frames appear as 1-based in filenames
img_path = os.path.join(img_dir, f"frame_left_{frame_num:04d}.png")
disp1_path = os.path.join(disp1_dir, f"disp1_left_{frame_num:04d}.dsp5")
fflow_path = None
bflow_path = None
if i < len(all_intrinsics) - 1:
fflow_path = os.path.join(
fflow_dir, f"flow_FW_left_{frame_num:04d}.flo5"
)
if i > 0:
bflow_path = os.path.join(
bflow_dir, f"flow_BW_left_{frame_num:04d}.flo5"
)
# Load image
image = Image.open(img_path).convert("RGB")
# Build the intrinsics matrix
K = np.eye(3, dtype=np.float32)
K[0, 0] = all_intrinsics[i][0] # fx
K[1, 1] = all_intrinsics[i][1] # fy
K[0, 2] = all_intrinsics[i][2] # cx
K[1, 2] = all_intrinsics[i][3] # cy
# Build the pose
cam_ext = all_extrinsics[i].reshape(4, 4)
pose = np.linalg.inv(cam_ext).astype(np.float32)
if np.any(np.isinf(pose)) or np.any(np.isnan(pose)):
return f"Invalid pose for frame {i} in {seq}"
# Load disparity
disp1 = flow_IO.readDispFile(disp1_path)
# Subsample by 2
disp1 = disp1[::2, ::2]
# Convert disparity to depth
fx_baseline = all_intrinsics[i][0] * baseline # fx * baseline
depth = get_depth(disp1, fx_baseline)
depth[np.isinf(depth)] = 0.0
depth[np.isnan(depth)] = 0.0
# Load optical flows if available
fflow = None
bflow = None
if fflow_path and os.path.exists(fflow_path):
fflow = flow_IO.readFlowFile(fflow_path)
fflow = fflow[::2, ::2]
if bflow_path and os.path.exists(bflow_path):
bflow = flow_IO.readFlowFile(bflow_path)
bflow = bflow[::2, ::2]
# Rescale image, depth, and intrinsics
image, depth, K_scaled = cropping.rescale_image_depthmap(
image, depth, K, output_size
)
W_new, H_new = image.size # after rescale_image_depthmap
# Rescale forward/backward flow
if fflow is not None:
fflow = rescale_flow(fflow, (W_new, H_new))
if bflow is not None:
bflow = rescale_flow(bflow, (W_new, H_new))
# Save output
out_index_str = f"{i:04d}"
out_img_path = os.path.join(out_img_dir, out_index_str + ".png")
image.save(out_img_path)
out_depth_path = os.path.join(out_depth_dir, out_index_str + ".npy")
np.save(out_depth_path, depth)
out_cam_path = os.path.join(out_cam_dir, out_index_str + ".npz")
np.savez(out_cam_path, intrinsics=K_scaled, pose=pose)
if fflow is not None:
out_fflow_path = os.path.join(out_fflow_dir, out_index_str + ".npy")
np.save(out_fflow_path, fflow)
if bflow is not None:
out_bflow_path = os.path.join(out_bflow_dir, out_index_str + ".npy")
np.save(out_bflow_path, bflow)
except Exception as e:
return f"Error processing sequence {seq}: {e}"
return None # success
def main():
parser = argparse.ArgumentParser(description="Preprocess Spring dataset.")
parser.add_argument(
"--root_dir",
required=True,
help="Path to the root directory containing Spring dataset sequences.",
)
parser.add_argument(
"--out_dir",
required=True,
help="Path to the output directory where processed files will be saved.",
)
parser.add_argument(
"--baseline",
type=float,
default=0.065,
help="Stereo baseline for disparity-to-depth conversion (default: 0.065).",
)
parser.add_argument(
"--output_size",
type=int,
nargs=2,
default=[960, 540],
help="Output image size (width height) for rescaling.",
)
args = parser.parse_args()
# Gather sequences
if not os.path.isdir(args.root_dir):
raise ValueError(f"Root directory not found: {args.root_dir}")
os.makedirs(args.out_dir, exist_ok=True)
seqs = sorted(
[
d
for d in os.listdir(args.root_dir)
if os.path.isdir(os.path.join(args.root_dir, d))
]
)
if not seqs:
raise ValueError(f"No valid sequence folders found in {args.root_dir}")
# Process each sequence in parallel
with ProcessPoolExecutor(max_workers=os.cpu_count() // 2) as executor:
future_to_seq = {
executor.submit(
process_sequence,
seq,
args.root_dir,
args.out_dir,
args.baseline,
args.output_size,
): seq
for seq in seqs
}
for future in tqdm(
as_completed(future_to_seq),
total=len(future_to_seq),
desc="Processing all sequences",
):
seq = future_to_seq[future]
error = future.result()
if error:
print(f"Sequence '{seq}' failed: {error}")
if __name__ == "__main__":
main()
|