Spaces:
Runtime error
Runtime error
File size: 7,154 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
#!/usr/bin/env python3
"""
This script processes scene data by reading images, depth maps, and camera poses,
computing camera intrinsics, and saving the results in a structured format.
Usage:
python preprocess_omniobject3d.py --input_dir /path/to/input_root --output_dir /path/to/output_root
"""
import os
import os.path as osp
import json
import argparse
from concurrent.futures import ProcessPoolExecutor
import numpy as np
import cv2
import imageio.v2 as imageio
from tqdm import tqdm
import math
# Enable OpenEXR support in OpenCV
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
def prepare_scene_args(scene, input_root, output_root):
"""
Prepare processing arguments for a given scene.
Args:
scene (str): Scene directory name.
input_root (str): Root directory for input data.
output_root (str): Root directory for output data.
Returns:
list or None: A list of arguments for each frame in the scene or None if preparation fails.
"""
seq_dir = osp.join(input_root, scene, "render")
rgb_dir = osp.join(seq_dir, "images")
depth_dir = osp.join(seq_dir, "depths")
pose_file = osp.join(seq_dir, "transforms.json")
out_seq_dir = osp.join(output_root, scene)
# Check if the necessary file exists
if not osp.exists(pose_file):
print(f"Pose file not found: {pose_file}")
return None
# Load metadata from JSON
with open(pose_file, "r") as fp:
meta = json.load(fp)
camera_angle_x = float(meta["camera_angle_x"])
# Create output directories for this scene
os.makedirs(osp.join(out_seq_dir, "rgb"), exist_ok=True)
os.makedirs(osp.join(out_seq_dir, "depth"), exist_ok=True)
os.makedirs(osp.join(out_seq_dir, "cam"), exist_ok=True)
# Prepare a list of frame processing arguments
frame_args = [
(frame, camera_angle_x, rgb_dir, depth_dir, out_seq_dir)
for frame in meta.get("frames", [])
]
return frame_args
def process_frame(args):
"""
Process a single frame:
- Reads the image and depth data.
- Handles alpha channels by compositing over a white background.
- Computes the camera intrinsics.
- Saves the processed RGB image, depth map, and camera parameters.
Args:
args (tuple): A tuple containing:
- frame (dict): Frame metadata.
- camera_angle_x (float): Camera field-of-view.
- rgb_dir (str): Directory containing RGB images.
- depth_dir (str): Directory containing depth maps.
- out_seq_dir (str): Output directory for the processed scene.
"""
frame, camera_angle_x, rgb_dir, depth_dir, out_seq_dir = args
# Derive the base name from the frame's file path
frame_name = osp.basename(frame["file_path"])
# Define file paths for input and output
image_path = osp.join(rgb_dir, frame_name + ".png")
depth_path = osp.join(depth_dir, frame_name + "_depth.exr")
out_img_path = osp.join(out_seq_dir, "rgb", frame_name + ".png")
out_depth_path = osp.join(out_seq_dir, "depth", frame_name + ".npy")
out_cam_path = osp.join(out_seq_dir, "cam", frame_name + ".npz")
# Skip processing if outputs already exist
if (
osp.exists(out_img_path)
and osp.exists(out_depth_path)
and osp.exists(out_cam_path)
):
return
# Read image using imageio
img = imageio.imread(image_path)
# If image has an alpha channel, composite it over a white background
if img.shape[-1] == 4:
alpha_channel = img[..., 3]
rgb_channels = img[..., :3]
white_background = np.full_like(rgb_channels, 255)
img = np.where(alpha_channel[..., None] == 0, white_background, rgb_channels)
else:
img = img[..., :3]
H, W, _ = img.shape
# Process the camera pose
pose = np.array(frame["transform_matrix"], dtype=np.float32)
pose[:, 1:3] *= -1 # Invert Y and Z axes if necessary
# Compute camera intrinsics using the provided camera angle
focal = 0.5 * W / np.tan(0.5 * camera_angle_x)
intrinsics = np.array(
[[focal, 0, W / 2], [0, focal, H / 2], [0, 0, 1]], dtype=np.float32
)
# Read depth data using OpenCV (which supports OpenEXR)
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
if depth is None:
print(f"Warning: Depth file not found or failed to read: {depth_path}")
return
# Use the last channel of the depth data and convert to float32
depth = depth[..., -1].astype(np.float32)
depth[depth >= 65504.0] = 0.0 # Set invalid depth values to 0
# Save the processed outputs
imageio.imwrite(out_img_path, img.astype(np.uint8))
np.save(out_depth_path, depth)
np.savez_compressed(out_cam_path, intrinsics=intrinsics, pose=pose)
def process_scene(frame_args):
"""
Process all frames within a single scene.
Args:
frame_args (list): List of frame arguments for the scene.
"""
if frame_args is None:
return
for args in frame_args:
process_frame(args)
def main():
parser = argparse.ArgumentParser(
description="Preprocess scene data by extracting RGB images, depth maps, and camera parameters."
)
parser.add_argument(
"--input_dir",
type=str,
required=True,
help="Path to the root input directory containing scene data.",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Path to the directory where processed data will be saved.",
)
parser.add_argument(
"--max_workers",
type=int,
default=None,
help="Maximum number of worker processes. Defaults to the number of CPU cores.",
)
args = parser.parse_args()
input_root = args.input_dir
output_root = args.output_dir
# Ensure the output root directory exists
os.makedirs(output_root, exist_ok=True)
# List all scene directories in the input root
scenes = sorted(
[d for d in os.listdir(input_root) if osp.isdir(osp.join(input_root, d))]
)
# Determine the number of workers to use
max_workers = (
args.max_workers if args.max_workers is not None else os.cpu_count() or 1
)
# Prepare processing arguments for each scene in parallel
with ProcessPoolExecutor(max_workers=max_workers) as executor:
scene_args_list = list(
tqdm(
executor.map(
lambda s: prepare_scene_args(s, input_root, output_root), scenes
),
total=len(scenes),
desc="Preparing scenes",
)
)
# Filter out scenes where preparation failed
scene_frame_args = [fa for fa in scene_args_list if fa is not None]
# Process each scene in parallel
with ProcessPoolExecutor(max_workers=max_workers) as executor:
list(
tqdm(
executor.map(process_scene, scene_frame_args),
total=len(scene_frame_args),
desc="Processing scenes",
)
)
if __name__ == "__main__":
main()
|