Spaces:
Runtime error
Runtime error
File size: 10,774 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
#!/usr/bin/env python3
"""
Preprocess the MVImgNet dataset.
This script processes MVImgNet sequences by:
- Loading a sparse SFM reconstruction.
- Undistorting and rescaling RGB images.
- Converting COLMAP intrinsics between conventions.
- Saving the processed images and camera metadata.
Usage:
python preprocess_mvimgnet.py --data_dir /path/to/MVImgNet_data \
--pcd_dir /path/to/MVPNet \
--output_dir /path/to/processed_mvimgnet
"""
import os
import os.path as osp
import argparse
import numpy as np
import open3d as o3d
import pyrender
import PIL.Image as Image
import cv2
import shutil
from tqdm import tqdm
import matplotlib.pyplot as plt
# Import your custom SFM processing function.
from read_write_model import run # Assumed to be available
# Try to set up resampling filters from PIL.
try:
lanczos = Image.Resampling.LANCZOS
bicubic = Image.Resampling.BICUBIC
except AttributeError:
lanczos = Image.LANCZOS
bicubic = Image.BICUBIC
# Conversion matrix from COLMAP (or OpenGL) to OpenCV conventions.
OPENGL_TO_OPENCV = np.float32(
[[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
)
# -----------------------------------------------------------------------------
# Helper Classes and Functions
# -----------------------------------------------------------------------------
class ImageList:
"""Convenience class to apply operations to a list of images."""
def __init__(self, images):
if not isinstance(images, (list, tuple)):
images = [images]
self.images = []
for image in images:
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
self.images.append(image)
def __len__(self):
return len(self.images)
def to_pil(self):
return tuple(self.images) if len(self.images) > 1 else self.images[0]
@property
def size(self):
sizes = [im.size for im in self.images]
assert all(s == sizes[0] for s in sizes)
return sizes[0]
def resize(self, *args, **kwargs):
return ImageList([im.resize(*args, **kwargs) for im in self.images])
def crop(self, *args, **kwargs):
return ImageList([im.crop(*args, **kwargs) for im in self.images])
def colmap_to_opencv_intrinsics(K):
"""
Convert COLMAP intrinsics (with pixel centers at (0.5, 0.5)) to OpenCV convention.
"""
K = K.copy()
K[0, 2] -= 0.5
K[1, 2] -= 0.5
return K
def opencv_to_colmap_intrinsics(K):
"""
Convert OpenCV intrinsics (with pixel centers at (0, 0)) to COLMAP convention.
"""
K = K.copy()
K[0, 2] += 0.5
K[1, 2] += 0.5
return K
def rescale_image_depthmap(
image, depthmap, camera_intrinsics, output_resolution, force=True
):
"""
Jointly rescale an image (and its depthmap) so that the output resolution is at least the desired value.
Args:
image: Input image (as a PIL.Image or compatible object).
depthmap: A corresponding depth map (or None).
camera_intrinsics: A 3x3 NumPy array of intrinsics.
output_resolution: (width, height) desired resolution.
force: If True, always rescale even if the image is smaller.
Returns:
Tuple of (rescaled image, rescaled depthmap, updated intrinsics).
"""
image = ImageList(image)
input_resolution = np.array(image.size) # (W, H)
output_resolution = np.array(output_resolution)
if depthmap is not None:
assert tuple(depthmap.shape[:2]) == image.size[::-1]
scale_final = max(output_resolution / image.size) + 1e-8
if scale_final >= 1 and not force:
return image.to_pil(), depthmap, camera_intrinsics
output_resolution = np.floor(input_resolution * scale_final).astype(int)
image = image.resize(
tuple(output_resolution), resample=lanczos if scale_final < 1 else bicubic
)
if depthmap is not None:
depthmap = cv2.resize(
depthmap, tuple(output_resolution), interpolation=cv2.INTER_NEAREST
)
camera_intrinsics = camera_matrix_of_crop(
camera_intrinsics, input_resolution, output_resolution, scaling=scale_final
)
return image.to_pil(), depthmap, camera_intrinsics
def camera_matrix_of_crop(
input_camera_matrix,
input_resolution,
output_resolution,
scaling=1,
offset_factor=0.5,
offset=None,
):
"""
Update the camera intrinsics to account for a rescaling (or cropping) of the image.
"""
margins = np.asarray(input_resolution) * scaling - output_resolution
assert np.all(margins >= 0.0)
if offset is None:
offset = offset_factor * margins
output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix)
output_camera_matrix_colmap[:2, :] *= scaling
output_camera_matrix_colmap[:2, 2] -= offset
output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap)
return output_camera_matrix
def pose_from_qwxyz_txyz(elems):
"""
Convert a quaternion (qw, qx, qy, qz) and translation (tx, ty, tz) to a 4x4 pose.
Returns the inverse of the computed pose (i.e. cam2world).
"""
from scipy.spatial.transform import Rotation
qw, qx, qy, qz, tx, ty, tz = map(float, elems)
pose = np.eye(4)
pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix()
pose[:3, 3] = (tx, ty, tz)
return np.linalg.inv(pose)
def load_sfm(sfm_dir):
"""
Load sparse SFM data from COLMAP output files.
Returns a tuple (img_idx, img_infos) where:
- img_idx: A dict mapping image filename to index.
- img_infos: A dict of image information (including intrinsics, file path, and camera pose).
"""
with open(osp.join(sfm_dir, "cameras.txt"), "r") as f:
raw = f.read().splitlines()[3:] # skip header
intrinsics = {}
for camera in raw:
camera = camera.split(" ")
intrinsics[int(camera[0])] = [camera[1]] + [float(x) for x in camera[2:]]
with open(osp.join(sfm_dir, "images.txt"), "r") as f:
raw = f.read().splitlines()
raw = [line for line in raw if not line.startswith("#")]
img_idx = {}
img_infos = {}
for image, points in zip(raw[0::2], raw[1::2]):
image = image.split(" ")
points = points.split(" ")
idx = image[0]
img_name = image[-1]
assert img_name not in img_idx, f"Duplicate image: {img_name}"
img_idx[img_name] = idx
current_points2D = {
int(i): (float(x), float(y))
for i, x, y in zip(points[2::3], points[0::3], points[1::3])
if i != "-1"
}
img_infos[idx] = dict(
intrinsics=intrinsics[int(image[-2])],
path=img_name,
frame_id=img_name,
cam_to_world=pose_from_qwxyz_txyz(image[1:-2]),
sparse_pts2d=current_points2D,
)
return img_idx, img_infos
def undistort_images(intrinsics, rgb):
"""
Given camera intrinsics (in COLMAP convention) and an RGB image, compute and return
the corresponding OpenCV intrinsics along with the (unchanged) image.
"""
width = int(intrinsics[1])
height = int(intrinsics[2])
fx = intrinsics[3]
fy = intrinsics[4]
cx = intrinsics[5]
cy = intrinsics[6]
K = np.zeros([3, 3])
K[0, 0] = fx
K[0, 2] = cx
K[1, 1] = fy
K[1, 2] = cy
K[2, 2] = 1
return width, height, K, rgb
# -----------------------------------------------------------------------------
# Processing Functions
# -----------------------------------------------------------------------------
def process_sequence(category, obj, data_dir, output_dir):
"""
Process a single sequence from MVImgNet.
Steps:
1. Load the point cloud (from the MVPNet directory) and create a mesh (using Pyrender) for visualization.
2. Load the SFM reconstruction from COLMAP files.
3. For each image in the SFM output:
a. Load the image.
b. Undistort and rescale it.
c. Update the camera intrinsics.
d. Save the processed image and camera metadata.
"""
# Define directories.
seq_dir = osp.join(data_dir, "MVImgNet_by_categories", category, obj[:-4])
rgb_dir = osp.join(seq_dir, "images")
sfm_dir = osp.join(seq_dir, "sparse", "0")
output_scene_dir = osp.join(output_dir, f"{category}_{obj[:-4]}")
output_rgb_dir = osp.join(output_scene_dir, "rgb")
output_cam_dir = osp.join(output_scene_dir, "cam")
os.makedirs(output_rgb_dir, exist_ok=True)
os.makedirs(output_cam_dir, exist_ok=True)
# Run custom SFM processing.
run(sfm_dir, sfm_dir)
img_idx, img_infos = load_sfm(sfm_dir)
for imgname in img_idx:
idx = img_idx[imgname]
info = img_infos[idx]
rgb_path = osp.join(rgb_dir, info["path"])
if not osp.exists(rgb_path):
continue
rgb = np.array(Image.open(rgb_path))
_, _, K, rgb = undistort_images(info["intrinsics"], rgb)
intrinsics = colmap_to_opencv_intrinsics(K)
# Rescale image to a target resolution (e.g., 640x480) preserving aspect ratio.
image, _, intrinsics = rescale_image_depthmap(
rgb, None, intrinsics, (640, int(640 * 3.0 / 4))
)
intrinsics = opencv_to_colmap_intrinsics(intrinsics)
out_img_path = osp.join(output_rgb_dir, info["path"][:-3] + "jpg")
image.save(out_img_path)
out_cam_path = osp.join(output_cam_dir, info["path"][:-3] + "npz")
np.savez(out_cam_path, intrinsics=intrinsics, pose=info["cam_to_world"])
def main():
parser = argparse.ArgumentParser(
description="Preprocess MVImgNet dataset: undistort, rescale images, and save camera parameters."
)
parser.add_argument(
"--data_dir",
type=str,
default="/path/to/MVImgNet_data",
help="Directory containing MVImgNet data (images and point clouds).",
)
parser.add_argument(
"--output_dir",
type=str,
default="/path/to/processed_mvimgnet",
help="Directory where processed data will be saved.",
)
args = parser.parse_args()
data_dir = args.data_dir
output_dir = args.output_dir
# Get list of categories.
categories = sorted(
[
d
for d in os.listdir(osp.join(data_dir, "MVImgNet_by_categories"))
if osp.isdir(osp.join(data_dir, "MVImgNet_by_categories", d))
]
)
for cat in categories:
objects = sorted(os.listdir(osp.join(data_dir, "MVImgNet_by_categories", cat)))
for obj in objects:
process_sequence(cat, obj, data_dir, output_dir)
if __name__ == "__main__":
main()
|