File size: 7,837 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
"""
Preprocess the Matterport3D (MP3D) dataset.

This script reads camera parameters and overlap data from a configuration file,
processes RGB images and corresponding depth images, adjusts camera poses using a
conversion matrix, and then saves the processed images, depth maps, and camera
metadata into separate output directories.

Usage:
    python preprocess_mp3d.py --root_dir /path/to/data_mp3d/v1/scans \
                              --out_dir /path/to/processed_mp3d
"""

import os
import numpy as np
import cv2
import shutil
from concurrent.futures import ProcessPoolExecutor, as_completed
from tqdm import tqdm
import argparse


def process_image(args):
    """
    Process a single image: reads the RGB image and depth image, normalizes the depth,
    adjusts the camera pose using a conversion matrix, and saves the processed outputs.

    Parameters:
      args: tuple containing
         (i, paths, K, pose, img_dir, depth_dir, out_rgb_dir, out_depth_dir, out_cam_dir, R_conv)
         where:
           i             - the frame index
           paths         - tuple of (depth filename, RGB filename)
           K             - camera intrinsics matrix (3x3 NumPy array)
           pose          - camera pose (4x4 NumPy array)
           img_dir       - directory containing RGB images
           depth_dir     - directory containing depth images
           out_rgb_dir   - output directory for processed RGB images
           out_depth_dir - output directory for processed depth maps
           out_cam_dir   - output directory for processed camera metadata
           R_conv        - a 4x4 conversion matrix (NumPy array)
    Returns:
      None if successful, or an error string if processing fails.
    """
    (
        i,
        paths,
        K,
        pose,
        img_dir,
        depth_dir,
        out_rgb_dir,
        out_depth_dir,
        out_cam_dir,
        R_conv,
    ) = args

    depth_path, img_path = paths
    img_path_full = os.path.join(img_dir, img_path)
    depth_path_full = os.path.join(depth_dir, depth_path)

    try:
        # Read depth image using OpenCV (assumed to be stored with 16-bit depth)
        depth = cv2.imread(depth_path_full, cv2.IMREAD_ANYDEPTH).astype(np.float32)
        depth = depth / 4000.0  # Normalize depth (adjust this factor as needed)

        # Adjust the camera pose with the conversion matrix
        pose_adjusted = pose @ R_conv

        # Generate output filenames using a zero-padded frame index.
        basename = f"{i:06d}"
        out_img_path = os.path.join(out_rgb_dir, basename + ".png")
        out_depth_path = os.path.join(out_depth_dir, basename + ".npy")
        out_cam_path = os.path.join(out_cam_dir, basename + ".npz")

        # Copy the RGB image.
        shutil.copyfile(img_path_full, out_img_path)

        # Save the depth map.
        np.save(out_depth_path, depth)

        # Save the camera intrinsics and adjusted pose.
        np.savez(out_cam_path, intrinsics=K, pose=pose_adjusted)

    except Exception as e:
        return f"Error processing image {img_path}: {e}"

    return None


def main():
    parser = argparse.ArgumentParser(
        description="Preprocess MP3D scans: convert and save RGB images, depth maps, and camera metadata."
    )
    parser.add_argument(
        "--root_dir",
        type=str,
        default="/path/to/data_mp3d/v1/scans",
        help="Root directory of the raw MP3D data.",
    )
    parser.add_argument(
        "--out_dir",
        type=str,
        default="/path/to/processed_mp3d",
        help="Output directory for processed MP3D data.",
    )
    args = parser.parse_args()

    root = args.root_dir
    out_dir = args.out_dir

    # List sequence directories (each scan is stored as a separate directory).
    seqs = sorted([d for d in os.listdir(root) if os.path.isdir(os.path.join(root, d))])

    # Define a conversion matrix from MP3D to the desired coordinate system.
    R_conv = np.array(
        [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=np.float32
    )

    for seq in tqdm(seqs, desc="Sequences"):
        # The sequence directory structure assumes that images and depth files are stored
        # under a subdirectory with the same name as the sequence.
        seq_dir = os.path.join(root, seq, seq)

        img_dir = os.path.join(seq_dir, "undistorted_color_images")
        depth_dir = os.path.join(seq_dir, "undistorted_depth_images")
        cam_file = os.path.join(seq_dir, "undistorted_camera_parameters", f"{seq}.conf")
        overlap_file = os.path.join(seq_dir, "image_overlap_data", f"{seq}_iis.txt")

        # Read overlap data and save it (optional).
        overlap = []
        with open(overlap_file, "r") as f:
            for line in f:
                parts = line.split()
                overlap.append([int(parts[1]), int(parts[2]), float(parts[3])])
        overlap = np.array(overlap)
        os.makedirs(os.path.join(out_dir, seq), exist_ok=True)
        np.save(os.path.join(out_dir, seq, "overlap.npy"), overlap)

        # Read camera parameters from a configuration file.
        intrinsics = []
        camera_poses = []
        image_files = []

        with open(cam_file, "r") as file:
            lines = file.readlines()
        current_intrinsics = None
        for line in lines:
            parts = line.split()
            if not parts:
                continue
            if parts[0] == "intrinsics_matrix":
                # Extract intrinsic parameters.
                fx, cx, fy, cy = (
                    float(parts[1]),
                    float(parts[3]),
                    float(parts[5]),
                    float(parts[6]),
                )
                current_intrinsics = np.array(
                    [[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32
                )
            elif parts[0] == "scan":
                # Read the image filenames and camera pose.
                depth_image = parts[1]
                color_image = parts[2]
                image_files.append((depth_image, color_image))
                matrix_values = list(map(float, parts[3:]))
                camera_pose = np.array(matrix_values).reshape(4, 4)
                camera_poses.append(camera_pose)
                if current_intrinsics is not None:
                    intrinsics.append(current_intrinsics.copy())

        if not (len(image_files) == len(intrinsics) == len(camera_poses)):
            print(f"Inconsistent data in sequence {seq}")
            continue

        # Prepare output directories.
        out_rgb_dir = os.path.join(out_dir, seq, "rgb")
        out_depth_dir = os.path.join(out_dir, seq, "depth")
        out_cam_dir = os.path.join(out_dir, seq, "cam")
        os.makedirs(out_rgb_dir, exist_ok=True)
        os.makedirs(out_depth_dir, exist_ok=True)
        os.makedirs(out_cam_dir, exist_ok=True)

        tasks = []
        for i, (paths, K, pose) in enumerate(
            zip(image_files, intrinsics, camera_poses)
        ):
            args_task = (
                i,
                paths,
                K,
                pose,
                img_dir,
                depth_dir,
                out_rgb_dir,
                out_depth_dir,
                out_cam_dir,
                R_conv,
            )
            tasks.append(args_task)

        num_workers = os.cpu_count() // 2
        with ProcessPoolExecutor(max_workers=num_workers) as executor:
            futures = {executor.submit(process_image, task): task[0] for task in tasks}
            for future in tqdm(
                as_completed(futures), total=len(futures), desc=f"Processing {seq}"
            ):
                error = future.result()
                if error:
                    print(error)


if __name__ == "__main__":
    main()