File size: 6,491 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import random
import gzip
import json
import os
import sys

import os.path as osp

import torch
import PIL.Image
from PIL import Image
import numpy as np
import cv2

from tqdm import tqdm
import matplotlib.pyplot as plt
import shutil
from read_write_model import run

import torch
import torchvision


def get_parser():
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--dl3dv_dir", default="../DL3DV-Dense/3K/")  # TODO
    parser.add_argument("--output_dir", default="../processed_dl3dv/3K/")  # TODO
    return parser


from scipy.spatial.transform import Rotation as R


def read_array(path):
    with open(path, "rb") as fid:
        width, height, channels = np.genfromtxt(
            fid, delimiter="&", max_rows=1, usecols=(0, 1, 2), dtype=int
        )
        fid.seek(0)
        num_delimiter = 0
        byte = fid.read(1)
        while True:
            if byte == b"&":
                num_delimiter += 1
                if num_delimiter >= 3:
                    break
            byte = fid.read(1)
        array = np.fromfile(fid, np.float32)
    array = array.reshape((width, height, channels), order="F")
    return np.transpose(array, (1, 0, 2)).squeeze()


def main(rootdir, outdir):
    os.makedirs(outdir, exist_ok=True)

    envs = [f for f in os.listdir(rootdir) if os.path.isdir(osp.join(rootdir, f))]
    for env in tqdm(envs):
        subseqs = [
            f
            for f in os.listdir(osp.join(rootdir, env))
            if os.path.isdir(osp.join(rootdir, env, f)) and f.startswith("dense")
        ]
        for subseq in subseqs:
            sparse_dir = osp.join(rootdir, env, subseq, "sparse")
            images_dir = osp.join(rootdir, env, subseq, "images")
            # depth_dir = osp.join(rootdir, env, subseq, "stereo", "depth_maps")
            if (
                (not os.path.exists(sparse_dir))
                or (not os.path.exists(images_dir))
                # or (not os.path.exists(depth_dir))
            ):
                continue
            intrins_file = sparse_dir + "/cameras.txt"
            poses_file = sparse_dir + "/images.txt"
            if os.path.exists(intrins_file) and os.path.exists(poses_file):
                continue
            run(sparse_dir, sparse_dir)

            cam_params = {}
            with open(intrins_file, "r") as f:
                for line in f:
                    if line.startswith("#"):
                        continue
                    parts = line.strip().split()
                    if len(parts) == 0:
                        continue
                    cam_id = int(parts[0])
                    fx = float(parts[4])
                    fy = float(parts[5])
                    cx = float(parts[6])
                    cy = float(parts[7])
                    cam_params[cam_id] = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])

            poses = []
            images = []
            intrinsics = []

            with open(poses_file, "r") as f:
                for i, line in enumerate(f):
                    if line.startswith("#"):
                        continue
                    parts = line.strip().split()
                    if len(parts) == 0:
                        continue
                    if "." in parts[0]:
                        continue

                    img_name = parts[-1]
                    w, x, y, z = map(float, parts[1:5])
                    R = np.array(
                        [
                            [
                                1 - 2 * y * y - 2 * z * z,
                                2 * x * y - 2 * z * w,
                                2 * x * z + 2 * y * w,
                            ],
                            [
                                2 * x * y + 2 * z * w,
                                1 - 2 * x * x - 2 * z * z,
                                2 * y * z - 2 * x * w,
                            ],
                            [
                                2 * x * z - 2 * y * w,
                                2 * y * z + 2 * x * w,
                                1 - 2 * x * x - 2 * y * y,
                            ],
                        ]
                    )
                    tx, ty, tz = map(float, parts[5:8])
                    cam_id = int(parts[-2])
                    pose = np.eye(4)
                    pose[:3, :3] = R
                    pose[:3, 3] = [tx, ty, tz]
                    poses.append(np.linalg.inv(pose))
                    images.append(img_name)
                    intrinsics.append(cam_params[cam_id])

            os.makedirs(osp.join(outdir, env, subseq), exist_ok=True)
            os.makedirs(osp.join(outdir, env, subseq, "rgb"), exist_ok=True)
            # os.makedirs(osp.join(outdir, env, subseq, "depth"), exist_ok=True)
            os.makedirs(osp.join(outdir, env, subseq, "cam"), exist_ok=True)

            for i, img_name in enumerate(tqdm(images)):
                basename = img_name.split("/")[-1]
                if os.path.exists(
                    osp.join(
                        outdir, env, subseq, "cam", basename.replace(".png", ".npz")
                    )
                ):
                    print("Exist!")
                    continue
                img_path = os.path.join(images_dir, img_name)
                # depth_path = os.path.join(depth_dir, img_name + ".geometric.bin")
                if not os.path.exists(depth_path) or not os.path.exists(img_path):
                    continue
                try:
                    rgb = Image.open(img_path)
                    # depth = read_array(depth_path)
                except:
                    continue
                intrinsic = intrinsics[i]
                pose = poses[i]

                # save all

                rgb.save(osp.join(outdir, env, subseq, "rgb", basename))
                # np.save(
                #     osp.join(
                #         outdir, env, subseq, "depth", basename.replace(".png", ".npy")
                #     ),
                #     depth,
                # )
                np.savez(
                    osp.join(
                        outdir, env, subseq, "cam", basename.replace(".png", ".npz")
                    ),
                    intrinsic=intrinsic,
                    pose=pose,
                )


if __name__ == "__main__":
    parser = get_parser()
    args = parser.parse_args()
    main(args.dl3dv_dir, args.output_dir)