Spaces:
Runtime error
Runtime error
File size: 11,824 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
#!/usr/bin/env python3
# --------------------------------------------------------
# Script to pre-process the COP3D dataset.
# Usage:
# python3 preprocess_cop3d.py --cop3d_dir /path/to/cop3d \
# --output_dir /path/to/processed_cop3d
# --------------------------------------------------------
import argparse
import random
import gzip
import json
import os
import os.path as osp
import torch
import PIL.Image
import numpy as np
import cv2
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
import src.dust3r.datasets.utils.cropping as cropping
# Define the object categories. (These are used for seeding.)
CATEGORIES = ["cat", "dog"]
CATEGORIES_IDX = {cat: i for i, cat in enumerate(CATEGORIES)}
def get_parser():
"""Set up the argument parser."""
parser = argparse.ArgumentParser(
description="Preprocess the CO3D dataset and output processed images, masks, and metadata."
)
parser.add_argument(
"--output_dir",
type=str,
default="",
help="Output directory for processed CO3D data.",
)
parser.add_argument(
"--cop3d_dir",
type=str,
default="",
help="Directory containing the raw CO3D data.",
)
parser.add_argument(
"--seed", type=int, default=42, help="Random seed for reproducibility."
)
parser.add_argument(
"--min_quality",
type=float,
default=0.5,
help="Minimum viewpoint quality score.",
)
parser.add_argument(
"--img_size",
type=int,
default=512,
help=(
"Lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size"
),
)
return parser
def convert_ndc_to_pinhole(focal_length, principal_point, image_size):
"""Convert normalized device coordinates to a pinhole camera intrinsic matrix."""
focal_length = np.array(focal_length)
principal_point = np.array(principal_point)
image_size_wh = np.array([image_size[1], image_size[0]])
half_image_size = image_size_wh / 2
rescale = half_image_size.min()
principal_point_px = half_image_size - principal_point * rescale
focal_length_px = focal_length * rescale
fx, fy = focal_length_px[0], focal_length_px[1]
cx, cy = principal_point_px[0], principal_point_px[1]
K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32)
return K
def opencv_from_cameras_projection(R, T, focal, p0, image_size):
"""
Convert camera projection parameters from CO3D (NDC) to OpenCV coordinates.
Returns:
R, tvec, camera_matrix: OpenCV-style rotation matrix, translation vector, and intrinsic matrix.
"""
R = torch.from_numpy(R)[None, :, :]
T = torch.from_numpy(T)[None, :]
focal = torch.from_numpy(focal)[None, :]
p0 = torch.from_numpy(p0)[None, :]
image_size = torch.from_numpy(image_size)[None, :]
# Convert to PyTorch3D convention.
R_pytorch3d = R.clone()
T_pytorch3d = T.clone()
focal_pytorch3d = focal
p0_pytorch3d = p0
T_pytorch3d[:, :2] *= -1
R_pytorch3d[:, :, :2] *= -1
tvec = T_pytorch3d
R = R_pytorch3d.permute(0, 2, 1)
# Retype image_size (flip to width, height).
image_size_wh = image_size.to(R).flip(dims=(1,))
# Compute scale and principal point.
scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
scale = scale.expand(-1, 2)
c0 = image_size_wh / 2.0
principal_point = -p0_pytorch3d * scale + c0
focal_length = focal_pytorch3d * scale
camera_matrix = torch.zeros_like(R)
camera_matrix[:, :2, 2] = principal_point
camera_matrix[:, 2, 2] = 1.0
camera_matrix[:, 0, 0] = focal_length[:, 0]
camera_matrix[:, 1, 1] = focal_length[:, 1]
return R[0], tvec[0], camera_matrix[0]
def get_set_list(category_dir, split):
"""Obtain a list of sequences for a given category and split."""
listfiles = os.listdir(osp.join(category_dir, "set_lists"))
subset_list_files = [f for f in listfiles if "manyview" in f]
if len(subset_list_files) <= 0:
subset_list_files = [f for f in listfiles if "fewview" in f]
sequences_all = []
for subset_list_file in subset_list_files:
with open(osp.join(category_dir, "set_lists", subset_list_file)) as f:
subset_lists_data = json.load(f)
sequences_all.extend(subset_lists_data[split])
return sequences_all
def prepare_sequences(
category, cop3d_dir, output_dir, img_size, split, min_quality, seed
):
"""
Process sequences for a given category and split.
This function loads per-frame and per-sequence annotations,
filters sequences based on quality, crops and rescales images,
and saves metadata for each frame.
Returns a dictionary mapping sequence names to lists of selected frame indices.
"""
random.seed(seed)
category_dir = osp.join(cop3d_dir, category)
category_output_dir = osp.join(output_dir, category)
sequences_all = get_set_list(category_dir, split)
# Get unique sequence names.
sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all))
# Load frame and sequence annotation files.
frame_file = osp.join(category_dir, "frame_annotations.jgz")
sequence_file = osp.join(category_dir, "sequence_annotations.jgz")
with gzip.open(frame_file, "r") as fin:
frame_data = json.loads(fin.read())
with gzip.open(sequence_file, "r") as fin:
sequence_data = json.loads(fin.read())
# Organize frame annotations per sequence.
frame_data_processed = {}
for f_data in frame_data:
sequence_name = f_data["sequence_name"]
frame_data_processed.setdefault(sequence_name, {})[
f_data["frame_number"]
] = f_data
# Select sequences with quality above the threshold.
good_quality_sequences = set()
for seq_data in sequence_data:
if seq_data["viewpoint_quality_score"] > min_quality:
good_quality_sequences.add(seq_data["sequence_name"])
sequences_numbers = [
seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences
]
selected_sequences_numbers = sequences_numbers
selected_sequences_numbers_dict = {
seq_name: [] for seq_name in selected_sequences_numbers
}
# Filter frames to only those from selected sequences.
sequences_all = [
(seq_name, frame_number, filepath)
for seq_name, frame_number, filepath in sequences_all
if seq_name in selected_sequences_numbers_dict
]
# Process each frame.
for seq_name, frame_number, filepath in tqdm(
sequences_all, desc="Processing frames"
):
frame_idx = int(filepath.split("/")[-1][5:-4])
selected_sequences_numbers_dict[seq_name].append(frame_idx)
mask_path = filepath.replace("images", "masks").replace(".jpg", ".png")
frame_data_entry = frame_data_processed[seq_name][frame_number]
focal_length = frame_data_entry["viewpoint"]["focal_length"]
principal_point = frame_data_entry["viewpoint"]["principal_point"]
image_size = frame_data_entry["image"]["size"]
K = convert_ndc_to_pinhole(focal_length, principal_point, image_size)
R, tvec, camera_intrinsics = opencv_from_cameras_projection(
np.array(frame_data_entry["viewpoint"]["R"]),
np.array(frame_data_entry["viewpoint"]["T"]),
np.array(focal_length),
np.array(principal_point),
np.array(image_size),
)
# Load input image and mask.
image_path = osp.join(cop3d_dir, filepath)
mask_path_full = osp.join(cop3d_dir, mask_path)
input_rgb_image = PIL.Image.open(image_path).convert("RGB")
input_mask = plt.imread(mask_path_full)
H, W = input_mask.shape
camera_intrinsics = camera_intrinsics.numpy()
cx, cy = camera_intrinsics[:2, 2].round().astype(int)
min_margin_x = min(cx, W - cx)
min_margin_y = min(cy, H - cy)
l, t = cx - min_margin_x, cy - min_margin_y
r, b = cx + min_margin_x, cy + min_margin_y
crop_bbox = (l, t, r, b)
# Crop the image, mask, and adjust intrinsics.
input_rgb_image, input_mask, input_camera_intrinsics = (
cropping.crop_image_depthmap(
input_rgb_image, input_mask, camera_intrinsics, crop_bbox
)
)
scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
if max(output_resolution) < img_size:
scale_final = (img_size / max(H, W)) + 1e-8
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
input_rgb_image, input_mask, input_camera_intrinsics = (
cropping.rescale_image_depthmap(
input_rgb_image, input_mask, input_camera_intrinsics, output_resolution
)
)
# Generate and adjust camera pose.
camera_pose = np.eye(4, dtype=np.float32)
camera_pose[:3, :3] = R
camera_pose[:3, 3] = tvec
camera_pose = np.linalg.inv(camera_pose)
# Save processed image and mask.
save_img_path = osp.join(output_dir, filepath)
save_mask_path = osp.join(output_dir, mask_path)
os.makedirs(osp.split(save_img_path)[0], exist_ok=True)
os.makedirs(osp.split(save_mask_path)[0], exist_ok=True)
input_rgb_image.save(save_img_path)
cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8))
# Save metadata (intrinsics and pose).
save_meta_path = save_img_path.replace("jpg", "npz")
np.savez(
save_meta_path,
camera_intrinsics=input_camera_intrinsics,
camera_pose=camera_pose,
)
return selected_sequences_numbers_dict
def main():
parser = get_parser()
args = parser.parse_args()
assert (
args.cop3d_dir != args.output_dir
), "Input and output directories must differ."
categories = CATEGORIES
os.makedirs(args.output_dir, exist_ok=True)
# Process each split separately.
for split in ["train", "test"]:
selected_sequences_path = osp.join(
args.output_dir, f"selected_seqs_{split}.json"
)
if os.path.isfile(selected_sequences_path):
continue
all_selected_sequences = {}
for category in categories:
category_output_dir = osp.join(args.output_dir, category)
os.makedirs(category_output_dir, exist_ok=True)
category_selected_sequences_path = osp.join(
category_output_dir, f"selected_seqs_{split}.json"
)
if os.path.isfile(category_selected_sequences_path):
with open(category_selected_sequences_path, "r") as fid:
category_selected_sequences = json.load(fid)
else:
print(f"Processing {split} - category = {category}")
category_selected_sequences = prepare_sequences(
category=category,
cop3d_dir=args.cop3d_dir,
output_dir=args.output_dir,
img_size=args.img_size,
split=split,
min_quality=args.min_quality,
seed=args.seed + CATEGORIES_IDX[category],
)
with open(category_selected_sequences_path, "w") as file:
json.dump(category_selected_sequences, file)
all_selected_sequences[category] = category_selected_sequences
with open(selected_sequences_path, "w") as file:
json.dump(all_selected_sequences, file)
if __name__ == "__main__":
main()
|