Spaces:
Runtime error
Runtime error
File size: 13,143 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
#!/usr/bin/env python3
"""
Process Bedlam scenes by computing camera intrinsics and extrinsics
from extracted data. The script reads per-scene CSV and image/depth files,
computes the necessary camera parameters, and saves the resulting camera
files (as .npz files) in an output directory.
Usage:
python preprocess_bedlam.py --root /path/to/extracted_data \
--outdir /path/to/processed_bedlam \
[--num_workers 4]
"""
import os
import cv2
import numpy as np
import pandas as pd
from glob import glob
import shutil
import OpenEXR # Ensure OpenEXR is installed
from concurrent.futures import ProcessPoolExecutor, as_completed
from tqdm import tqdm
import argparse
# Enable OpenEXR support in OpenCV.
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
# Global constants
IMG_FORMAT = ".png"
rotate_flag = False
SENSOR_W = 36
SENSOR_H = 20.25
IMG_W = 1280
IMG_H = 720
# -----------------------------------------------------------------------------
# Helper functions for camera parameter conversion
# -----------------------------------------------------------------------------
def focalLength_mm2px(focalLength, dslr_sens, focalPoint):
focal_pixel = (focalLength / dslr_sens) * focalPoint * 2
return focal_pixel
def get_cam_int(fl, sens_w, sens_h, cx, cy):
flx = focalLength_mm2px(fl, sens_w, cx)
fly = focalLength_mm2px(fl, sens_h, cy)
cam_mat = np.array([[flx, 0, cx], [0, fly, cy], [0, 0, 1]])
return cam_mat
def unreal2cv2(points):
# Permute coordinates: x --> y, y --> z, z --> x
points = np.roll(points, 2, axis=1)
# Invert the y-axis
points = points * np.array([1.0, -1.0, 1.0])
return points
def get_cam_trans(body_trans, cam_trans):
cam_trans = np.array(cam_trans) / 100
cam_trans = unreal2cv2(np.reshape(cam_trans, (1, 3)))
body_trans = np.array(body_trans) / 100
body_trans = unreal2cv2(np.reshape(body_trans, (1, 3)))
trans = body_trans - cam_trans
return trans
def get_cam_rotmat(pitch, yaw, roll):
rotmat_yaw, _ = cv2.Rodrigues(np.array([[0, (yaw / 180) * np.pi, 0]], dtype=float))
rotmat_pitch, _ = cv2.Rodrigues(np.array([pitch / 180 * np.pi, 0, 0]).reshape(3, 1))
rotmat_roll, _ = cv2.Rodrigues(np.array([0, 0, roll / 180 * np.pi]).reshape(3, 1))
final_rotmat = rotmat_roll @ (rotmat_pitch @ rotmat_yaw)
return final_rotmat
def get_global_orient(cam_pitch, cam_yaw, cam_roll):
pitch_rotmat, _ = cv2.Rodrigues(
np.array([cam_pitch / 180 * np.pi, 0, 0]).reshape(3, 1)
)
roll_rotmat, _ = cv2.Rodrigues(
np.array([0, 0, cam_roll / 180 * np.pi]).reshape(3, 1)
)
final_rotmat = roll_rotmat @ pitch_rotmat
return final_rotmat
def convert_translation_to_opencv(x, y, z):
t_cv = np.array([y, -z, x])
return t_cv
def rotation_matrix_unreal(yaw, pitch, roll):
yaw_rad = np.deg2rad(yaw)
pitch_rad = np.deg2rad(pitch)
roll_rad = np.deg2rad(roll)
# Yaw (left-handed)
R_yaw = np.array(
[
[np.cos(-yaw_rad), -np.sin(-yaw_rad), 0],
[np.sin(-yaw_rad), np.cos(-yaw_rad), 0],
[0, 0, 1],
]
)
# Pitch (right-handed)
R_pitch = np.array(
[
[np.cos(pitch_rad), 0, np.sin(pitch_rad)],
[0, 1, 0],
[-np.sin(pitch_rad), 0, np.cos(pitch_rad)],
]
)
# Roll (right-handed)
R_roll = np.array(
[
[1, 0, 0],
[0, np.cos(roll_rad), -np.sin(roll_rad)],
[0, np.sin(roll_rad), np.cos(roll_rad)],
]
)
R_unreal = R_roll @ R_pitch @ R_yaw
return R_unreal
def convert_rotation_to_opencv(R_unreal):
# Transformation matrix from Unreal to OpenCV coordinate system.
C = np.array([[0, 1, 0], [0, 0, -1], [1, 0, 0]])
R_cv = C @ R_unreal @ C.T
return R_cv
def get_rot_unreal(yaw, pitch, roll):
yaw_rad = np.deg2rad(yaw)
pitch_rad = np.deg2rad(pitch)
roll_rad = np.deg2rad(roll)
R_yaw = np.array(
[
[np.cos(yaw_rad), -np.sin(yaw_rad), 0],
[np.sin(yaw_rad), np.cos(yaw_rad), 0],
[0, 0, 1],
]
)
R_pitch = np.array(
[
[np.cos(pitch_rad), 0, -np.sin(pitch_rad)],
[0, 1, 0],
[np.sin(pitch_rad), 0, np.cos(pitch_rad)],
]
)
R_roll = np.array(
[
[1, 0, 0],
[0, np.cos(roll_rad), np.sin(roll_rad)],
[0, -np.sin(roll_rad), np.cos(roll_rad)],
]
)
R_unreal = R_yaw @ R_pitch @ R_roll
return R_unreal
def get_extrinsics_unreal(R_unreal, t_unreal):
cam_trans = np.array(t_unreal)
ext = np.eye(4)
ext[:3, :3] = R_unreal
ext[:3, 3] = cam_trans.reshape(1, 3)
return ext
def get_extrinsics_opencv(yaw, pitch, roll, x, y, z):
R_unreal = get_rot_unreal(yaw, pitch, roll)
t_unreal = np.array([x / 100.0, y / 100.0, z / 100.0])
T_u2wu = get_extrinsics_unreal(R_unreal, t_unreal)
T_opencv2unreal = np.array(
[[0, 0, -1, 0], [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 0, 1]], dtype=np.float32
)
T_wu2ou = np.array(
[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float32
)
return np.linalg.inv(T_opencv2unreal @ T_u2wu @ T_wu2ou)
# -----------------------------------------------------------------------------
# Get camera parameters from the extracted images and CSV data.
# -----------------------------------------------------------------------------
def get_params(
image_folder,
fl,
trans_body,
cam_x,
cam_y,
cam_z,
fps,
cam_pitch_,
cam_roll_,
cam_yaw_,
):
all_images = sorted(glob(os.path.join(image_folder, "*" + IMG_FORMAT)))
imgnames, cam_ext, cam_int = [], [], []
for img_ind, image_path in enumerate(all_images):
# Process every 5th frame.
if img_ind % 5 != 0:
continue
cam_ind = img_ind
cam_pitch_ind = cam_pitch_[cam_ind]
cam_yaw_ind = cam_yaw_[cam_ind]
cam_roll_ind = cam_roll_[cam_ind]
CAM_INT = get_cam_int(fl[cam_ind], SENSOR_W, SENSOR_H, IMG_W / 2.0, IMG_H / 2.0)
rot_unreal = rotation_matrix_unreal(cam_yaw_ind, cam_pitch_ind, cam_roll_ind)
rot_cv = convert_rotation_to_opencv(rot_unreal)
trans_cv = convert_translation_to_opencv(
cam_x[cam_ind] / 100.0, cam_y[cam_ind] / 100.0, cam_z[cam_ind] / 100.0
)
cam_ext_ = np.eye(4)
cam_ext_[:3, :3] = rot_cv
# The camera pose is computed as the inverse of the transformed translation.
cam_ext_[:3, 3] = -rot_cv @ trans_cv
imgnames.append(
os.path.join(image_path.split("/")[-2], image_path.split("/")[-1])
)
cam_ext.append(cam_ext_)
cam_int.append(CAM_INT)
return imgnames, cam_ext, cam_int
# -----------------------------------------------------------------------------
# Processing per sequence.
# -----------------------------------------------------------------------------
def process_seq(args):
"""
Process a single sequence task. For each image, load the corresponding
depth and image files, and save the computed camera intrinsics and the inverse
of the extrinsic matrix (i.e. the camera pose in world coordinates) as an NPZ file.
"""
(
scene,
seq_name,
outdir,
image_folder_base,
depth_folder_base,
imgnames,
cam_ext,
cam_int,
) = args
out_rgb_dir = os.path.join(outdir, '_'.join([scene, seq_name]), 'rgb')
out_depth_dir = os.path.join(outdir, '_'.join([scene, seq_name]), 'depth')
out_cam_dir = os.path.join(outdir, "_".join([scene, seq_name]), "cam")
os.makedirs(out_rgb_dir, exist_ok=True)
os.makedirs(out_depth_dir, exist_ok=True)
os.makedirs(out_cam_dir, exist_ok=True)
assert (
len(imgnames) == len(cam_ext) == len(cam_int)
), f"Inconsistent lengths for {scene}_{seq_name}"
for imgname, ext, intr in zip(imgnames, cam_ext, cam_int):
depthname = imgname.replace(".png", "_depth.exr")
imgpath = os.path.join(image_folder_base, imgname)
depthpath = os.path.join(depth_folder_base, depthname)
depth= OpenEXR.File(depthpath).parts[0].channels['Depth'].pixels
depth = depth.astype(np.float32)/100.0
outimg_path = os.path.join(out_rgb_dir, os.path.basename(imgpath))
outdepth_path = os.path.join(out_depth_dir, os.path.basename(imgpath).replace('.png','.npy'))
outcam_path = os.path.join(
out_cam_dir, os.path.basename(imgpath).replace(".png", ".npz")
)
shutil.copy(imgpath, outimg_path)
np.save(outdepth_path, depth)
np.savez(outcam_path, intrinsics=intr, pose=np.linalg.inv(ext))
return None
# -----------------------------------------------------------------------------
# Main entry point.
# -----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(
description="Process Bedlam scenes: compute camera intrinsics and extrinsics, "
"and save processed camera files."
)
parser.add_argument(
"--root",
type=str,
required=True,
help="Root directory of the extracted data (scenes).",
)
parser.add_argument(
"--outdir", type=str, required=True, help="Output directory for processed data."
)
parser.add_argument(
"--num_workers",
type=int,
default=None,
help="Number of worker processes (default: os.cpu_count()//2).",
)
args = parser.parse_args()
root = args.root
outdir = args.outdir
num_workers = (
args.num_workers if args.num_workers is not None else (os.cpu_count() or 4) // 2
)
# Get scene directories from the root folder.
scenes = sorted(
[d for d in os.listdir(root) if os.path.isdir(os.path.join(root, d))]
)
# Exclude HDRI scenes.
hdri_scenes = [
"20221010_3_1000_batch01hand",
"20221017_3_1000_batch01hand",
"20221018_3-8_250_batch01hand",
"20221019_3_250_highbmihand",
]
scenes = np.setdiff1d(scenes, hdri_scenes)
tasks = []
for scene in tqdm(scenes, desc="Collecting tasks"):
# Skip closeup scenes.
if "closeup" in scene:
continue
base_folder = os.path.join(root, scene)
image_folder_base = os.path.join(root, scene, "png")
depth_folder_base = os.path.join(root, scene, "depth")
csv_path = os.path.join(base_folder, "be_seq.csv")
if not os.path.exists(csv_path):
continue
csv_data = pd.read_csv(csv_path)
csv_data = csv_data.to_dict("list")
cam_csv_base = os.path.join(base_folder, "ground_truth", "camera")
# Look for a row in the CSV with a "sequence_name" comment.
for idx, comment in enumerate(csv_data.get("Comment", [])):
if "sequence_name" in comment:
seq_name = comment.split(";")[0].split("=")[-1]
cam_csv_path = os.path.join(cam_csv_base, seq_name + "_camera.csv")
if not os.path.exists(cam_csv_path):
continue
cam_csv_data = pd.read_csv(cam_csv_path)
cam_csv_data = cam_csv_data.to_dict("list")
cam_x = cam_csv_data["x"]
cam_y = cam_csv_data["y"]
cam_z = cam_csv_data["z"]
cam_yaw_ = cam_csv_data["yaw"]
cam_pitch_ = cam_csv_data["pitch"]
cam_roll_ = cam_csv_data["roll"]
fl = cam_csv_data["focal_length"]
image_folder = os.path.join(image_folder_base, seq_name)
trans_body = None # Not used here.
imgnames, cam_ext, cam_int = get_params(
image_folder,
fl,
trans_body,
cam_x,
cam_y,
cam_z,
6,
cam_pitch_=cam_pitch_,
cam_roll_=cam_roll_,
cam_yaw_=cam_yaw_,
)
tasks.append(
(
scene,
seq_name,
outdir,
image_folder_base,
depth_folder_base,
imgnames,
cam_ext,
cam_int,
)
)
# Process only the first valid sequence for this scene.
break
# Process each task in parallel.
with ProcessPoolExecutor(max_workers=num_workers) as executor:
futures = {executor.submit(process_seq, task): task for task in tasks}
for future in tqdm(
as_completed(futures), total=len(futures), desc="Processing sequences"
):
error = future.result()
if error:
print(error)
if __name__ == "__main__":
main()
|