File size: 7,243 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env python3
"""
Process 3D Ken Burns data by selecting random view types, copying images and depth files,
and computing camera intrinsics from a field-of-view value. The output files are stored in an
organized folder structure.

Usage:
    python preprocess_3dkb.py --root /path/to/data_3d_ken_burns \
                           --out_dir /path/to/processed_3dkb \
                           [--num_workers 4] [--seed 42]
"""

import os
import json
import random
import shutil
from functools import partial
from pathlib import Path
import argparse

import cv2  # noqa: F401; cv2 is imported to ensure OpenEXR support.
import numpy as np
from PIL import Image
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed

# Ensure OpenCV can read OpenEXR files.
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"


def fov_to_intrinsic_matrix(width, height, fov_deg, fov_type="horizontal"):
    """
    Converts field of view (FOV) in degrees to a camera intrinsic matrix.

    Args:
        width (int): Image width in pixels.
        height (int): Image height in pixels.
        fov_deg (float): Field of view in degrees.
        fov_type (str): 'horizontal' or 'vertical'; determines which FOV is used.

    Returns:
        np.ndarray: A 3x3 camera intrinsic matrix.

    Raises:
        ValueError: If width or height is non-positive or if fov_deg is not in (0, 180).
    """
    if width <= 0 or height <= 0:
        raise ValueError("Image width and height must be positive numbers.")
    if not (0 < fov_deg < 180):
        raise ValueError("FOV must be between 0 and 180 degrees (non-inclusive).")
    if fov_type not in ["horizontal", "vertical"]:
        raise ValueError("fov_type must be either 'horizontal' or 'vertical'.")

    fov_rad = np.deg2rad(fov_deg)

    if fov_type == "horizontal":
        f_x = width / (2 * np.tan(fov_rad / 2))
        aspect_ratio = height / width
        f_y = f_x * aspect_ratio
    else:
        f_y = height / (2 * np.tan(fov_rad / 2))
        aspect_ratio = width / height
        f_x = f_y * aspect_ratio

    c_x = width / 2
    c_y = height / 2
    K = np.array([[f_x, 0, c_x], [0, f_y, c_y], [0, 0, 1]])
    return K


def process_basename(root, seq, basename, view_types, out_dir):
    """
    Processes a single basename: selects a random view type, copies the corresponding
    image and depth file, and computes the camera intrinsics from the JSON metadata.

    Args:
        root (str): Root directory of the raw data.
        seq (str): Sequence directory name.
        basename (str): Basename (common identifier) for the files.
        view_types (list): List of view types to choose from (e.g. ['bl', 'br', 'tl', 'tr']).
        out_dir (str): Output directory where processed data will be saved.

    Returns:
        str or None: Returns an error message string on failure; otherwise, returns None.
    """
    # Select a random view type.
    view_type = random.choice(view_types)

    imgname = f"{basename}-{view_type}-image.png"
    depthname = f"{basename}-{view_type}-depth.exr"

    img_path = os.path.join(root, seq, imgname)
    cam_path = os.path.join(root, seq, f"{basename}-meta.json")
    depth_path = os.path.join(root, f"{seq}-depth", depthname)

    # Prepare output directories.
    out_seq_dir = os.path.join(out_dir, seq)
    out_rgb_dir = os.path.join(out_seq_dir, "rgb")
    out_depth_dir = os.path.join(out_seq_dir, "depth")
    out_cam_dir = os.path.join(out_seq_dir, "cam")

    # Output file paths.
    out_img_path = os.path.join(out_rgb_dir, f"{basename}.png")
    out_depth_path = os.path.join(out_depth_dir, f"{basename}.exr")
    out_cam_path = os.path.join(out_cam_dir, f"{basename}.npz")

    try:
        # Load image using PIL and save as PNG.
        with Image.open(img_path) as img:
            W, H = img.size
            img.save(out_img_path, format="PNG")

        # Load camera JSON metadata.
        with open(cam_path, "r") as f:
            cam = json.load(f)
        fov = cam["fltFov"]
        K = fov_to_intrinsic_matrix(W, H, fov)

        # Copy depth file.
        shutil.copy(depth_path, out_depth_path)

        # Save camera intrinsics.
        np.savez(out_cam_path, intrinsics=K)

    except Exception as e:
        return f"Error processing {seq}/{basename}: {e}"

    return None  # Success indicator


def main():
    parser = argparse.ArgumentParser(
        description="Process raw 3D Ken Burns video data and generate processed images, depth maps, and camera intrinsics."
    )
    parser.add_argument(
        "--root", type=str, required=True, help="Root directory of the raw data."
    )
    parser.add_argument(
        "--out_dir",
        type=str,
        required=True,
        help="Output directory for processed data.",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=None,
        help="Number of worker processes to use (default: half of available CPUs).",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for reproducibility (default: 42).",
    )
    parser.add_argument(
        "--view_types",
        type=str,
        nargs="+",
        default=["bl", "br", "tl", "tr"],
        help="List of view types to choose from (default: bl br tl tr).",
    )
    args = parser.parse_args()

    # Set the random seed.
    random.seed(args.seed)

    root = args.root
    out_dir = args.out_dir
    view_types = args.view_types

    # Determine number of worker processes.
    num_workers = (
        args.num_workers if args.num_workers is not None else (os.cpu_count() or 4) // 2
    )

    # Collect all sequence directories from root.
    seq_dirs = [
        d
        for d in os.listdir(root)
        if os.path.isdir(os.path.join(root, d)) and not d.endswith("-depth")
    ]

    # Pre-create output directory structure.
    for seq in seq_dirs:
        for subfolder in ["rgb", "depth", "cam"]:
            (Path(out_dir) / seq / subfolder).mkdir(parents=True, exist_ok=True)

    # Prepare list of tasks.
    tasks = []
    for seq in seq_dirs:
        seq_path = os.path.join(root, seq)
        # Assume JSON files contain metadata and have a name ending with "-meta.json".
        json_files = [f for f in os.listdir(seq_path) if f.endswith(".json")]
        # Remove the trailing "-meta.json" (10 characters) to get the basename.
        basenames = sorted([f[:-10] for f in json_files])
        for basename in basenames:
            tasks.append((seq, basename))

    # Define a partial function with fixed root, view_types, and out_dir.
    process_func = partial(
        process_basename, root, view_types=view_types, out_dir=out_dir
    )

    # Process tasks in parallel using ProcessPoolExecutor.
    with ProcessPoolExecutor(max_workers=num_workers) as executor:
        futures = {
            executor.submit(process_func, seq, basename): (seq, basename)
            for seq, basename in tasks
        }
        for future in tqdm(
            as_completed(futures), total=len(futures), desc="Processing"
        ):
            error = future.result()
            if error:
                print(error)


if __name__ == "__main__":
    main()