Spaces:
Runtime error
Runtime error
File size: 17,035 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import struct
import numpy as np
import png
import re
import sys
import csv
from PIL import Image
import h5py
FLO_TAG_FLOAT = (
202021.25 # first 4 bytes in flo file; check for this when READING the file
)
FLO_TAG_STRING = "PIEH" # first 4 bytes in flo file; use this when WRITING the file
FLO_UNKNOWN_FLOW_THRESH = 1e9 # flo format threshold for unknown values
FLO_UNKNOWN_FLOW = 1e10 # value to use to represent unknown flow in flo file format
def readFlowFile(filepath):
"""read flow files in several formats. The resulting flow has shape height x width x 2.
For positions where there is no groundtruth available, the flow is set to np.nan.
Supports flo (Sintel), png (KITTI), npy (numpy), pfm (FlyingThings3D) and flo5 (Spring) file format.
filepath: path to the flow file
returns: flow with shape height x width x 2
"""
if filepath.endswith(".flo"):
return readFloFlow(filepath)
elif filepath.endswith(".png"):
return readPngFlow(filepath)
elif filepath.endswith(".npy"):
return readNpyFlow(filepath)
elif filepath.endswith(".pfm"):
return readPfmFlow(filepath)
elif filepath.endswith(".flo5"):
return readFlo5Flow(filepath)
else:
raise ValueError(f"readFlowFile: Unknown file format for {filepath}")
def writeFlowFile(flow, filepath):
"""write optical flow to file. Supports flo (Sintel), png (KITTI) and npy (numpy) file format.
flow: optical flow with shape height x width x 2. Invalid values should be represented as np.nan
filepath: file path where to write the flow
"""
if not filepath:
raise ValueError("writeFlowFile: empty filepath")
if len(flow.shape) != 3 or flow.shape[2] != 2:
raise IOError(
f"writeFlowFile {filepath}: expected shape height x width x 2 but received {flow.shape}"
)
if flow.shape[0] > flow.shape[1]:
print(
f"write flo file {filepath}: Warning: Are you writing an upright image? Expected shape height x width x 2, got {flow.shape}"
)
if filepath.endswith(".flo"):
return writeFloFlow(flow, filepath)
elif filepath.endswith(".png"):
return writePngFlow(flow, filepath)
elif filepath.endswith(".npy"):
return writeNpyFile(flow, filepath)
elif filepath.endswith(".flo5"):
return writeFlo5File(flow, filepath)
else:
raise ValueError(f"writeFlowFile: Unknown file format for {filepath}")
def readFloFlow(filepath):
"""read optical flow from file stored in .flo file format as used in the Sintel dataset (Butler et al., 2012)
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2
---
".flo" file format used for optical flow evaluation
Stores 2-band float image for horizontal (u) and vertical (v) flow components.
Floats are stored in little-endian order.
A flow value is considered "unknown" if either |u| or |v| is greater than 1e9.
bytes contents
0-3 tag: "PIEH" in ASCII, which in little endian happens to be the float 202021.25
(just a sanity check that floats are represented correctly)
4-7 width as an integer
8-11 height as an integer
12-end data (width*height*2*4 bytes total)
the float values for u and v, interleaved, in row order, i.e.,
u[row0,col0], v[row0,col0], u[row0,col1], v[row0,col1], ...
"""
if filepath is None:
raise IOError("read flo file: empty filename")
if not filepath.endswith(".flo"):
raise IOError(f"read flo file ({filepath}): extension .flo expected")
with open(filepath, "rb") as stream:
tag = struct.unpack("f", stream.read(4))[0]
width = struct.unpack("i", stream.read(4))[0]
height = struct.unpack("i", stream.read(4))[0]
if tag != FLO_TAG_FLOAT: # simple test for correct endian-ness
raise IOError(
f"read flo file({filepath}): wrong tag (possibly due to big-endian machine?)"
)
# another sanity check to see that integers were read correctly (99999 should do the trick...)
if width < 1 or width > 99999:
raise IOError(f"read flo file({filepath}): illegal width {width}")
if height < 1 or height > 99999:
raise IOError(f"read flo file({filepath}): illegal height {height}")
nBands = 2
flow = []
n = nBands * width
for _ in range(height):
data = stream.read(n * 4)
if data is None:
raise IOError(f"read flo file({filepath}): file is too short")
data = np.asarray(struct.unpack(f"{n}f", data))
data = data.reshape((width, nBands))
flow.append(data)
if stream.read(1) != b"":
raise IOError(f"read flo file({filepath}): file is too long")
flow = np.asarray(flow)
# unknown values are set to nan
flow[np.abs(flow) > FLO_UNKNOWN_FLOW_THRESH] = np.nan
return flow
def writeFloFlow(flow, filepath):
"""
write optical flow in .flo format to file as used in the Sintel dataset (Butler et al., 2012)
flow: optical flow with shape height x width x 2
filepath: optical flow file path to be saved
---
".flo" file format used for optical flow evaluation
Stores 2-band float image for horizontal (u) and vertical (v) flow components.
Floats are stored in little-endian order.
A flow value is considered "unknown" if either |u| or |v| is greater than 1e9.
bytes contents
0-3 tag: "PIEH" in ASCII, which in little endian happens to be the float 202021.25
(just a sanity check that floats are represented correctly)
4-7 width as an integer
8-11 height as an integer
12-end data (width*height*2*4 bytes total)
the float values for u and v, interleaved, in row order, i.e.,
u[row0,col0], v[row0,col0], u[row0,col1], v[row0,col1], ...
"""
height, width, nBands = flow.shape
with open(filepath, "wb") as f:
if f is None:
raise IOError(f"write flo file {filepath}: file could not be opened")
# write header
result = f.write(FLO_TAG_STRING.encode("ascii"))
result += f.write(struct.pack("i", width))
result += f.write(struct.pack("i", height))
if result != 12:
raise IOError(f"write flo file {filepath}: problem writing header")
# write content
n = nBands * width
for i in range(height):
data = flow[i, :, :].flatten()
data[np.isnan(data)] = FLO_UNKNOWN_FLOW
result = f.write(struct.pack(f"{n}f", *data))
if result != n * 4:
raise IOError(f"write flo file {filepath}: problem writing row {i}")
def readPngFlow(filepath):
"""read optical flow from file stored in png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2. Invalid values are represented as np.nan
"""
# adapted from https://github.com/liruoteng/OpticalFlowToolkit
flow_object = png.Reader(filename=filepath)
flow_direct = flow_object.asDirect()
flow_data = list(flow_direct[2])
(w, h) = flow_direct[3]["size"]
flow = np.zeros((h, w, 3), dtype=np.float64)
for i in range(len(flow_data)):
flow[i, :, 0] = flow_data[i][0::3]
flow[i, :, 1] = flow_data[i][1::3]
flow[i, :, 2] = flow_data[i][2::3]
invalid_idx = flow[:, :, 2] == 0
flow[:, :, 0:2] = (flow[:, :, 0:2] - 2**15) / 64.0
flow[invalid_idx, 0] = np.nan
flow[invalid_idx, 1] = np.nan
return flow[:, :, :2]
def writePngFlow(flow, filename):
"""write optical flow to file png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
flow: optical flow in shape height x width x 2, invalid values should be represented as np.nan
filepath: path to file where to write to
"""
flow = 64.0 * flow + 2**15
width = flow.shape[1]
height = flow.shape[0]
valid_map = np.ones([flow.shape[0], flow.shape[1], 1])
valid_map[np.isnan(flow[:, :, 0]) | np.isnan(flow[:, :, 1])] = 0
flow = np.nan_to_num(flow)
flow = np.concatenate([flow, valid_map], axis=-1)
flow = np.clip(flow, 0, 2**16 - 1)
flow = flow.astype(np.uint16)
flow = np.reshape(flow, (-1, width * 3))
with open(filename, "wb") as f:
writer = png.Writer(width=width, height=height, bitdepth=16, greyscale=False)
writer.write(f, flow)
def readNpyFlow(filepath):
"""read numpy array from file.
filepath: file to read from
returns: numpy array
"""
return np.load(filepath)
def writeNpyFile(arr, filepath):
"""write numpy array to file.
arr: numpy array to write
filepath: file to write to
"""
np.save(filepath, arr)
def writeFlo5File(flow, filename):
with h5py.File(filename, "w") as f:
f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5)
def readFlo5Flow(filename):
with h5py.File(filename, "r") as f:
if "flow" not in f.keys():
raise IOError(
f"File {filename} does not have a 'flow' key. Is this a valid flo5 file?"
)
return f["flow"][()]
def readPfmFlow(filepath):
"""read optical flow from file stored in pfm file format as used in the FlyingThings3D (Mayer et al., 2016) dataset.
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2.
"""
flow = readPfmFile(filepath)
if len(flow.shape) != 3:
raise IOError(
f"read pfm flow: PFM file has wrong shape (assumed to be w x h x 3): {flow.shape}"
)
if flow.shape[2] != 3:
raise IOError(
f"read pfm flow: PFM file has wrong shape (assumed to be w x h x 3): {flow.shape}"
)
# remove third channel -> is all zeros
return flow[:, :, :2]
def readPfmFile(filepath):
"""
adapted from https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
"""
file = open(filepath, "rb")
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == "PF":
color = True
elif header.decode("ascii") == "Pf":
color = False
else:
raise Exception("Not a PFM file.")
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception("Malformed PFM header.")
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0: # little-endian
endian = "<"
scale = -scale
else:
endian = ">" # big-endian
data = np.fromfile(file, endian + "f")
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data # , scale
def writePfmFile(image, filepath):
"""
adapted from https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
"""
scale = 1
file = open(filepath, "wb")
color = None
if image.dtype.name != "float32":
raise Exception("Image dtype must be float32.")
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif (
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
): # greyscale
color = False
else:
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
file.write("PF\n" if color else "Pf\n".encode())
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == "<" or endian == "=" and sys.byteorder == "little":
scale = -scale
file.write("%f\n".encode() % scale)
image.tofile(file)
def readDispFile(filepath):
"""read disparity (or disparity change) from file. The resulting numpy array has shape height x width.
For positions where there is no groundtruth available, the value is set to np.nan.
Supports png (KITTI), npy (numpy) and pfm (FlyingThings3D) file format.
filepath: path to the flow file
returns: disparity with shape height x width
"""
if filepath.endswith(".png"):
return readPngDisp(filepath)
elif filepath.endswith(".npy"):
return readNpyFlow(filepath)
elif filepath.endswith(".pfm"):
return readPfmDisp(filepath)
elif filepath.endswith(".dsp5"):
return readDsp5Disp(filepath)
else:
raise ValueError(f"readDispFile: Unknown file format for {filepath}")
def readPngDisp(filepath):
"""read disparity from file stored in png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
filepath: path to file where to read from
returns: disparity as a numpy array with shape height x width. Invalid values are represented as np.nan
"""
# adapted from https://github.com/liruoteng/OpticalFlowToolkit
image_object = png.Reader(filename=filepath)
image_direct = image_object.asDirect()
image_data = list(image_direct[2])
(w, h) = image_direct[3]["size"]
channel = len(image_data[0]) // w
if channel != 1:
raise IOError("read png disp: assumed channels to be 1!")
disp = np.zeros((h, w), dtype=np.float64)
for i in range(len(image_data)):
disp[i, :] = image_data[i][:]
disp[disp == 0] = np.nan
return disp[:, :] / 256.0
def readPfmDisp(filepath):
"""read disparity or disparity change from file stored in pfm file format as used in the FlyingThings3D (Mayer et al., 2016) dataset.
filepath: path to file where to read from
returns: disparity as a numpy array with shape height x width. Invalid values are represented as np.nan
"""
disp = readPfmFile(filepath)
if len(disp.shape) != 2:
raise IOError(
f"read pfm disp: PFM file has wrong shape (assumed to be w x h): {disp.shape}"
)
return disp
def writePngDisp(disp, filepath):
"""write disparity to png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
disp: disparity in shape height x width, invalid values should be represented as np.nan
filepath: path to file where to write to
"""
disp = 256 * disp
width = disp.shape[1]
height = disp.shape[0]
disp = np.clip(disp, 0, 2**16 - 1)
disp = np.nan_to_num(disp).astype(np.uint16)
disp = np.reshape(disp, (-1, width))
with open(filepath, "wb") as f:
writer = png.Writer(width=width, height=height, bitdepth=16, greyscale=True)
writer.write(f, disp)
def writeDsp5File(disp, filename):
with h5py.File(filename, "w") as f:
f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5)
def readDsp5Disp(filename):
with h5py.File(filename, "r") as f:
if "disparity" not in f.keys():
raise IOError(
f"File {filename} does not have a 'disparity' key. Is this a valid dsp5 file?"
)
return f["disparity"][()]
def writeDispFile(disp, filepath):
"""write disparity to file. Supports png (KITTI) and npy (numpy) file format.
disp: disparity with shape height x width. Invalid values should be represented as np.nan
filepath: file path where to write the flow
"""
if not filepath:
raise ValueError("writeDispFile: empty filepath")
if len(disp.shape) != 2:
raise IOError(
f"writeDispFile {filepath}: expected shape height x width but received {disp.shape}"
)
if disp.shape[0] > disp.shape[1]:
print(
f"writeDispFile {filepath}: Warning: Are you writing an upright image? Expected shape height x width, got {disp.shape}"
)
if filepath.endswith(".png"):
writePngDisp(disp, filepath)
elif filepath.endswith(".npy"):
writeNpyFile(disp, filepath)
elif filepath.endswith(".dsp5"):
writeDsp5File(disp, filepath)
def readKITTIObjMap(filepath):
assert filepath.endswith(".png")
return np.asarray(Image.open(filepath)) > 0
def readKITTIIntrinsics(filepath, image=2):
assert filepath.endswith(".txt")
with open(filepath) as f:
reader = csv.reader(f, delimiter=" ")
for row in reader:
if row[0] == f"K_{image:02d}:":
K = np.array(row[1:], dtype=np.float32).reshape(3, 3)
kvec = np.array([K[0, 0], K[1, 1], K[0, 2], K[1, 2]])
return kvec
def writePngMapFile(map_, filename):
Image.fromarray(map_).save(filename)
|