File size: 12,678 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import torch.nn as nn
import torch
import roma
import numpy as np
import cv2
from functools import cache


def todevice(batch, device, callback=None, non_blocking=False):
    """Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy).

    batch: list, tuple, dict of tensors or other things
    device: pytorch device or 'numpy'
    callback: function that would be called on every sub-elements.
    """
    if callback:
        batch = callback(batch)

    if isinstance(batch, dict):
        return {k: todevice(v, device) for k, v in batch.items()}

    if isinstance(batch, (tuple, list)):
        return type(batch)(todevice(x, device) for x in batch)

    x = batch
    if device == "numpy":
        if isinstance(x, torch.Tensor):
            x = x.detach().cpu().numpy()
    elif x is not None:
        if isinstance(x, np.ndarray):
            x = torch.from_numpy(x)
        if torch.is_tensor(x):
            x = x.to(device, non_blocking=non_blocking)
    return x


to_device = todevice  # alias


def to_numpy(x):
    return todevice(x, "numpy")


def to_cpu(x):
    return todevice(x, "cpu")


def to_cuda(x):
    return todevice(x, "cuda")


def signed_log1p(x):
    sign = torch.sign(x)
    return sign * torch.log1p(torch.abs(x))


def l2_dist(a, b, weight):
    return (a - b).square().sum(dim=-1) * weight


def l1_dist(a, b, weight):
    return (a - b).norm(dim=-1) * weight


ALL_DISTS = dict(l1=l1_dist, l2=l2_dist)


def _check_edges(edges):
    indices = sorted({i for edge in edges for i in edge})
    assert indices == list(range(len(indices))), "bad pair indices: missing values "
    return len(indices)


def NoGradParamDict(x):
    assert isinstance(x, dict)
    return nn.ParameterDict(x).requires_grad_(False)


def edge_str(i, j):
    return f"{i}_{j}"


def i_j_ij(ij):
    # inputs are (i, j)
    return edge_str(*ij), ij


def edge_conf(conf_i, conf_j):
    score = float(conf_i.mean() * conf_j.mean())
    return score


def get_imshapes(edges, pred_i, pred_j):
    n_imgs = max(max(e) for e in edges) + 1
    imshapes = [None] * n_imgs
    for e, (i, j) in enumerate(edges):
        shape_i = tuple(pred_i[e]["pts3d_is_self_view"].shape[0:2])
        shape_j = tuple(pred_j[e]["pts3d_in_other_view"].shape[0:2])
        if imshapes[i]:
            assert imshapes[i] == shape_i, f"incorrect shape for image {i}"
        if imshapes[j]:
            assert imshapes[j] == shape_j, f"incorrect shape for image {j}"
        imshapes[i] = shape_i
        imshapes[j] = shape_j
    return imshapes


def get_conf_trf(mode):
    if mode == "log":

        def conf_trf(x):
            return x.log()

    elif mode == "sqrt":

        def conf_trf(x):
            return x.sqrt()

    elif mode == "m1":

        def conf_trf(x):
            return x - 1

    elif mode in ("id", "none"):

        def conf_trf(x):
            return x

    else:
        raise ValueError(f"bad mode for {mode=}")
    return conf_trf


@torch.no_grad()
def _compute_img_conf(imshapes, device, edges, edge2conf_i, edge2conf_j):
    im_conf = nn.ParameterList([torch.zeros(hw, device=device) for hw in imshapes])
    for e, (i, j) in enumerate(edges):
        im_conf[i] = torch.maximum(im_conf[i], edge2conf_i[edge_str(i, j)])
        im_conf[j] = torch.maximum(im_conf[j], edge2conf_j[edge_str(i, j)])
    return im_conf


def xy_grid(
    W,
    H,
    device=None,
    origin=(0, 0),
    unsqueeze=None,
    cat_dim=-1,
    homogeneous=False,
    **arange_kw,
):
    """Output a (H,W,2) array of int32
    with output[j,i,0] = i + origin[0]
         output[j,i,1] = j + origin[1]
    """
    if device is None:
        # numpy
        arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones
    else:
        # torch
        arange = lambda *a, **kw: torch.arange(*a, device=device, **kw)
        meshgrid, stack = torch.meshgrid, torch.stack
        ones = lambda *a: torch.ones(*a, device=device)

    tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)]
    grid = meshgrid(tw, th, indexing="xy")
    if homogeneous:
        grid = grid + (ones((H, W)),)
    if unsqueeze is not None:
        grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze))
    if cat_dim is not None:
        grid = stack(grid, cat_dim)
    return grid


def estimate_focal_knowing_depth(
    pts3d, pp, focal_mode="median", min_focal=0.0, max_focal=np.inf
):
    """Reprojection method, for when the absolute depth is known:
    1) estimate the camera focal using a robust estimator
    2) reproject points onto true rays, minimizing a certain error
    """
    B, H, W, THREE = pts3d.shape
    assert THREE == 3

    # centered pixel grid
    pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view(
        -1, 1, 2
    )  # B,HW,2
    pts3d = pts3d.flatten(1, 2)  # (B, HW, 3)

    if focal_mode == "median":
        with torch.no_grad():
            # direct estimation of focal
            u, v = pixels.unbind(dim=-1)
            x, y, z = pts3d.unbind(dim=-1)
            fx_votes = (u * z) / x
            fy_votes = (v * z) / y

            # assume square pixels, hence same focal for X and Y
            f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1)
            focal = torch.nanmedian(f_votes, dim=-1).values

    elif focal_mode == "weiszfeld":
        # init focal with l2 closed form
        # we try to find focal = argmin Sum | pixel - focal * (x,y)/z|
        xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(
            posinf=0, neginf=0
        )  # homogeneous (x,y,1)

        dot_xy_px = (xy_over_z * pixels).sum(dim=-1)
        dot_xy_xy = xy_over_z.square().sum(dim=-1)

        focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1)

        # iterative re-weighted least-squares
        for iter in range(10):
            # re-weighting by inverse of distance
            dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1)
            # print(dis.nanmean(-1))
            w = dis.clip(min=1e-8).reciprocal()
            # update the scaling with the new weights
            focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1)
    else:
        raise ValueError(f"bad {focal_mode=}")

    focal_base = max(H, W) / (
        2 * np.tan(np.deg2rad(60) / 2)
    )  # size / 1.1547005383792515
    focal = focal.clip(min=min_focal * focal_base, max=max_focal * focal_base)
    # print(focal)
    return focal


def estimate_focal(pts3d_i, pp=None):
    if pp is None:
        H, W, THREE = pts3d_i.shape
        assert THREE == 3
        pp = torch.tensor((W / 2, H / 2), device=pts3d_i.device)
    focal = estimate_focal_knowing_depth(
        pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode="weiszfeld"
    ).ravel()
    return float(focal)


def rigid_points_registration(pts1, pts2, conf):
    R, T, s = roma.rigid_points_registration(
        pts1.reshape(-1, 3),
        pts2.reshape(-1, 3),
        weights=conf.ravel(),
        compute_scaling=True,
    )
    return s, R, T  # return un-scaled (R, T)


def sRT_to_4x4(scale, R, T, device):
    trf = torch.eye(4, device=device)
    trf[:3, :3] = R * scale
    trf[:3, 3] = T.ravel()  # doesn't need scaling
    return trf


def geotrf(Trf, pts, ncol=None, norm=False):
    """Apply a geometric transformation to a list of 3-D points.

    H: 3x3 or 4x4 projection matrix (typically a Homography)
    p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)

    ncol: int. number of columns of the result (2 or 3)
    norm: float. if != 0, the resut is projected on the z=norm plane.

    Returns an array of projected 2d points.
    """
    assert Trf.ndim >= 2
    if isinstance(Trf, np.ndarray):
        pts = np.asarray(pts)
    elif isinstance(Trf, torch.Tensor):
        pts = torch.as_tensor(pts, dtype=Trf.dtype)

    # adapt shape if necessary
    output_reshape = pts.shape[:-1]
    ncol = ncol or pts.shape[-1]

    # optimized code
    if (
        isinstance(Trf, torch.Tensor)
        and isinstance(pts, torch.Tensor)
        and Trf.ndim == 3
        and pts.ndim == 4
    ):
        d = pts.shape[3]
        if Trf.shape[-1] == d:
            pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts)
        elif Trf.shape[-1] == d + 1:
            pts = (
                torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts)
                + Trf[:, None, None, :d, d]
            )
        else:
            raise ValueError(f"bad shape, not ending with 3 or 4, for {pts.shape=}")
    else:
        if Trf.ndim >= 3:
            n = Trf.ndim - 2
            assert Trf.shape[:n] == pts.shape[:n], "batch size does not match"
            Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])

            if pts.ndim > Trf.ndim:
                # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
                pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
            elif pts.ndim == 2:
                # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
                pts = pts[:, None, :]

        if pts.shape[-1] + 1 == Trf.shape[-1]:
            Trf = Trf.swapaxes(-1, -2)  # transpose Trf
            pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
        elif pts.shape[-1] == Trf.shape[-1]:
            Trf = Trf.swapaxes(-1, -2)  # transpose Trf
            pts = pts @ Trf
        else:
            pts = Trf @ pts.T
            if pts.ndim >= 2:
                pts = pts.swapaxes(-1, -2)

    if norm:
        pts = pts / pts[..., -1:]  # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
        if norm != 1:
            pts *= norm

    res = pts[..., :ncol].reshape(*output_reshape, ncol)
    return res


def inv(mat):
    """Invert a torch or numpy matrix"""
    if isinstance(mat, torch.Tensor):
        return torch.linalg.inv(mat)
    if isinstance(mat, np.ndarray):
        return np.linalg.inv(mat)
    raise ValueError(f"bad matrix type = {type(mat)}")


@cache
def pixel_grid(H, W):
    return np.mgrid[:W, :H].T.astype(np.float32)


def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10):
    # extract camera poses and focals with RANSAC-PnP
    if msk.sum() < 4:
        return None  # we need at least 4 points for PnP
    pts3d, msk = map(to_numpy, (pts3d, msk))

    H, W, THREE = pts3d.shape
    assert THREE == 3
    pixels = pixel_grid(H, W)

    if focal is None:
        S = max(W, H)
        tentative_focals = np.geomspace(S / 2, S * 3, 21)
    else:
        tentative_focals = [focal]

    if pp is None:
        pp = (W / 2, H / 2)
    else:
        pp = to_numpy(pp)

    best = (0,)
    for focal in tentative_focals:
        K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])

        success, R, T, inliers = cv2.solvePnPRansac(
            pts3d[msk],
            pixels[msk],
            K,
            None,
            iterationsCount=niter_PnP,
            reprojectionError=5,
            flags=cv2.SOLVEPNP_SQPNP,
        )
        if not success:
            continue

        score = len(inliers)
        if success and score > best[0]:
            best = score, R, T, focal

    if not best[0]:
        return None

    _, R, T, best_focal = best
    R = cv2.Rodrigues(R)[0]  # world to cam
    R, T = map(torch.from_numpy, (R, T))
    return best_focal, inv(sRT_to_4x4(1, R, T, device))  # cam to world


def get_med_dist_between_poses(poses):
    from scipy.spatial.distance import pdist

    return np.median(pdist([to_numpy(p[:3, 3]) for p in poses]))


def align_multiple_poses(src_poses, target_poses):
    N = len(src_poses)
    assert src_poses.shape == target_poses.shape == (N, 4, 4)

    def center_and_z(poses):
        eps = get_med_dist_between_poses(poses) / 100
        return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps * poses[:, :3, 2]))

    R, T, s = roma.rigid_points_registration(
        center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True
    )
    return s, R, T


def cosine_schedule(t, lr_start, lr_end):
    assert 0 <= t <= 1
    return lr_end + (lr_start - lr_end) * (1 + np.cos(t * np.pi)) / 2


def linear_schedule(t, lr_start, lr_end):
    assert 0 <= t <= 1
    return lr_start + (lr_end - lr_start) * t


def cycled_linear_schedule(t, lr_start, lr_end, num_cycles=2):
    assert 0 <= t <= 1
    cycle_t = t * num_cycles
    cycle_t = cycle_t - int(cycle_t)
    if t == 1:
        cycle_t = 1
    return linear_schedule(cycle_t, lr_start, lr_end)


def adjust_learning_rate_by_lr(optimizer, lr):
    for param_group in optimizer.param_groups:
        if "lr_scale" in param_group:
            param_group["lr"] = lr * param_group["lr_scale"]
        else:
            param_group["lr"] = lr