File size: 2,120 Bytes
8260e47
 
 
bf29adc
 
e6eaebf
bf29adc
410698b
bf29adc
 
410698b
bf29adc
630e69b
 
e6eaebf
410698b
 
 
 
 
 
630e69b
8260e47
 
 
 
 
 
 
bf29adc
8260e47
 
bf29adc
 
 
8260e47
bf29adc
 
 
410698b
 
 
 
 
bf29adc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95190fc
bf29adc
 
 
 
630e69b
bf29adc
 
 
95190fc
410698b
 
8260e47
bf29adc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from typing import Any, Dict, List

import cv2
import gradio as gr
import numpy as np
import torch
from gradio_image_annotation import image_annotator
from sam2 import load_model
from sam2.sam2_image_predictor import SAM2ImagePredictor

from src.plot_utils import export_mask


def predict(model_choice, annotations: Dict[str, Any]):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    sam2_model = load_model(
        variant=model_choice,
        ckpt_path=f"assets/checkpoints/sam2_hiera_{model_choice}.pt",
        device=device,
    )
    predictor = SAM2ImagePredictor(sam2_model)  # type:ignore
    predictor.set_image(annotations["image"])
    coordinates = []
    for i in range(len(annotations["boxes"])):
        coordinate = [
            int(annotations["boxes"][i]["xmin"]),
            int(annotations["boxes"][i]["ymin"]),
            int(annotations["boxes"][i]["xmax"]),
            int(annotations["boxes"][i]["ymax"]),
        ]
        coordinates.append(coordinate)

    masks, scores, _ = predictor.predict(
        point_coords=None,
        point_labels=None,
        box=np.array(coordinates),
        multimask_output=False,
    )

    if masks.shape[0] == 1:
        # handle single mask cases
        masks = np.expand_dims(masks, axis=0)

    return export_mask(masks)


with gr.Blocks(delete_cache=(30, 30)) as demo:
    gr.Markdown(
        """
        # 1. Choose Model Checkpoint
        """
    )
    with gr.Row():
        model = gr.Dropdown(
            choices=["tiny", "small", "base_plus", "large"],
            value="tiny",
            label="Model Checkpoint",
            info="Which model checkpoint to load?",
        )

    gr.Markdown(
        """
        # 2. Upload your Image and draw bounding box(es)
        """
    )

    annotator = image_annotator(
        value={"image": cv2.imread("assets/example.png")},
        disable_edit_boxes=True,
        label="Draw a bounding box",
    )
    btn = gr.Button("Get Segmentation Mask(s)")
    btn.click(
        fn=predict, inputs=[model, annotator], outputs=[gr.Image(label="Mask(s)")]
    )

demo.launch()