5
File size: 5,122 Bytes
0676715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import joblib
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.feature_selection import VarianceThreshold
from rdkit import Chem
import pandas as pd
from rdkit.Chem import Descriptors
from tqdm import tqdm

MAX_NA = 0.2

class NanFilter(object):
    def __init__(self):
        self._name = "nan_filter"

    def fit(self, X):
        max_na = int((1 - MAX_NA) * X.shape[0])
        idxs = []
        for j in range(X.shape[1]):
            c = np.sum(np.isnan(X[:, j]))
            if c > max_na:
                continue
            else:
                idxs += [j]
        self.col_idxs = idxs

    def transform(self, X):
        return X[:, self.col_idxs]

    def save(self, file_name):
        joblib.dump(self, file_name)

    def load(self, file_name):
        return joblib.load(file_name)


class Imputer(object):
    def __init__(self):
        self._name = "imputer"
        self._fallback = 0

    def fit(self, X):
        ms = []
        for j in range(X.shape[1]):
            vals = X[:, j]
            mask = ~np.isnan(vals)
            vals = vals[mask]
            if len(vals) == 0:
                m = self._fallback
            else:
                m = np.median(vals)
            ms += [m]
        self.impute_values = np.array(ms)

    def transform(self, X):
        for j in range(X.shape[1]):
            mask = np.isnan(X[:, j])
            X[mask, j] = self.impute_values[j]
        return X

    def save(self, file_name):
        joblib.dump(self, file_name)

    def load(self, file_name):
        return joblib.load(file_name)


class VarianceFilter(object):
    def __init__(self):
        self._name = "variance_filter"

    def fit(self, X):
        self.sel = VarianceThreshold()
        self.sel.fit(X)
        self.col_idxs = self.sel.transform([[i for i in range(X.shape[1])]]).ravel()

    def transform(self, X):
        return self.sel.transform(X)

    def save(self, file_name):
        joblib.dump(self, file_name)

    def load(self, file_name):
        return joblib.load(file_name)


def physchem_featurizer(smiles_list):
    R = []
    for smiles in tqdm(smiles_list):
        mol = Chem.MolFromSmiles(smiles)
        descriptors = []
        for _, descr_calc_fn in Descriptors._descList:
            descriptors.append(descr_calc_fn(mol))
        R += [np.array(descriptors)]
    return np.array(R)


def physchem_featurizer_as_dataframe(smiles_list):
    R = []
    for smiles in tqdm(smiles_list):
        mol = Chem.MolFromSmiles(smiles)
        descriptors = []
        for _, descr_calc_fn in Descriptors._descList:
            descriptors.append(descr_calc_fn(mol))
        R += [np.array(descriptors)]
    return pd.DataFrame(np.array(R), columns=[x[0] for x in Descriptors._descList])


class PhyschemDescriptor(object):
    def __init__(self, discretize=True):
        self.nan_filter = NanFilter()
        self.imputer = Imputer()
        self.variance_filter = VarianceFilter()
        self.discretizer = KBinsDiscretizer(
            n_bins=5, encode="ordinal", strategy="quantile"
        )
        self.discretize = discretize

    def fit(self, smiles):
        R = physchem_featurizer(smiles)
        X = np.array(R, dtype=np.float32)
        self.nan_filter.fit(X)
        X = self.nan_filter.transform(X)
        self.imputer.fit(X)
        X = self.imputer.transform(X)
        self.variance_filter.fit(X)
        X = self.variance_filter.transform(X)
        self.discretizer.fit(X)

    def transform(self, smiles):
        df = physchem_featurizer_as_dataframe(smiles)
        X = np.array(df, dtype=np.float32)
        X = self.nan_filter.transform(X)
        X = self.imputer.transform(X)
        X = self.variance_filter.transform(X)
        X = self.discretizer.transform(X)
        return np.array(X, dtype=int)


class PhyschemDescriptorWithFeatures(object):
    def __init__(self, discretize=True):
        self.nan_filter = NanFilter()
        self.imputer = Imputer()
        self.variance_filter = VarianceFilter()
        self.discretizer = KBinsDiscretizer(
            n_bins=5, encode="ordinal", strategy="quantile"
        )
        self.discretize = discretize

    def fit(self, smiles):
        df = physchem_featurizer_as_dataframe(smiles)
        X = np.array(df, dtype=np.float32)
        self.nan_filter.fit(X)
        X = self.nan_filter.transform(X)
        self.imputer.fit(X)
        X = self.imputer.transform(X)
        self.variance_filter.fit(X)
        X = self.variance_filter.transform(X)
        if self.discretize:
            self.discretizer.fit(X)
        col_idxs = self.variance_filter.col_idxs
        feature_names = list(df.columns)
        self.feature_names = [feature_names[i] for i in col_idxs]

    def transform(self, smiles):
        df = physchem_featurizer_as_dataframe(smiles)
        X = np.array(df, dtype=np.float32)
        X = self.nan_filter.transform(X)
        X = self.imputer.transform(X)
        X = self.variance_filter.transform(X)
        if self.discretize:
            X = self.discretizer.transform(X)
        return np.array(X, dtype=int)