File size: 24,926 Bytes
0676715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import os
import pandas as pd
import joblib
import numpy as np
import random
import collections
from scipy.stats import median_abs_deviation
from scipy.stats import rankdata, pearsonr
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.metrics import roc_auc_score
from sklearn.naive_bayes import GaussianNB as BaselineClassifier
from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor
from sklearn.feature_extraction.text import TfidfVectorizer
from tabpfn import TabPFNClassifier
from lol import LOL
from community import community_louvain
from fragment_embedder import FragmentEmbedder
import urllib.request
from io import BytesIO
from morgan_desc import *
from physchem_desc import *
from fragment_embedder import FragmentEmbedder
import onnxruntime as rt
random.seed(42)
np.random.seed(42)
# DATA_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "data")
# promiscuity_reference_predictions_file = os.path.join(DATA_PATH, "promiscuity_reference_predictions_07.joblib")
url = ''.join(('https://huggingface.co/datasets/ligdis/data/resolve/main/promiscuity_reference_predictions_07.joblib')) # The URL of the file you want to load
with urllib.request.urlopen(url) as response: # Download the file
promiscuity_reference_predictions = joblib.load(BytesIO(response.read()))
fragment_embedder = FragmentEmbedder()
# fids, _, precalc_embeddings = joblib.load(os.path.join(DATA_PATH, "cemm_emb.joblib"))
url = ''.join(('https://huggingface.co/datasets/ligdis/data/resolve/main/cemm_emb.joblib')) # The URL of the file you want to load
with urllib.request.urlopen(url) as response: # Download the file
fids, _, precalc_embeddings = joblib.load(BytesIO(response.read()))
# catalog_ids, _, precalc_embeddings_reference = joblib.load(os.path.join(DATA_PATH, "enamine_stock_emb.joblib"))
url = ''.join(('https://huggingface.co/datasets/ligdis/data/resolve/main/enamine_stock_emb.joblib')) # The URL of the file you want to load
with urllib.request.urlopen(url) as response: # Download the file
catalog_ids, _, precalc_embeddings_reference = joblib.load(BytesIO(response.read()))
# hits, fid_prom, pid_prom = joblib.load(os.path.join(DATA_PATH, "hits.joblib"))
url = ''.join(('https://huggingface.co/datasets/ligdis/data/resolve/main/hits.joblib')) # The URL of the file you want to load
with urllib.request.urlopen(url) as response: # Download the file
hits, fid_prom, pid_prom = joblib.load(BytesIO(response.read()))
def load_tabpfn_classifier():
# print("Loading TabPFN model")
if not 'tabpfn_model' in globals():
global tabpfn_model
tabpfn_model = TabPFNClassifier(device="cpu", N_ensemble_configurations=32)
class BinaryBalancer(object):
def __init__(self, proportion=0.5, n_samples=1000, smote=False):
self.proportion = proportion
self.n_samples = n_samples
self.smote = smote
def _resample(self, X, size, weights):
idxs = [i for i in range(X.shape[0])]
sampled_idxs = np.random.choice(
idxs, size=(size - X.shape[0]), replace=True, p=weights
)
X_s = X[sampled_idxs]
if self.smote:
n_neighbors = min(X.shape[0], 4)
nn = NearestNeighbors(n_neighbors=n_neighbors)
nn.fit(X)
neighs = nn.kneighbors(X_s, return_distance=False)[:, 1:]
R = []
w = np.array([0.75, 0.5, 0.25])
w = w[: neighs.shape[1]]
idxs_to_sample = [i for i in range(neighs.shape[1])]
w /= w.sum()
for i in range(X_s.shape[0]):
if len(idxs_to_sample) == 0:
R += [X_s[i]]
else:
gap = random.random()
j = int(np.random.choice(idxs_to_sample, p=w))
neigh_idx = neighs[i, j]
d = X[neigh_idx] - X_s[i]
R += [X_s[i] + gap * d]
X_s = np.array(R)
X = np.vstack([X, X_s])
return X
def transform(self, X, y, promiscuity_counts):
if promiscuity_counts is None:
sample_weights = None
else:
promiscuity_counts = np.clip(promiscuity_counts, 10, 500)
sample_weights = [1 / p for p in promiscuity_counts]
X = np.array(X)
y = np.array(y)
X_0 = X[y == 0]
X_1 = X[y == 1]
num_0_samples = int(self.n_samples * (1 - self.proportion))
num_1_samples = int(self.n_samples * self.proportion)
if sample_weights is None:
sample_weights = np.array([1.0] * X.shape[0])
else:
sample_weights = np.array(sample_weights)
weights_0 = sample_weights[y == 0]
weights_1 = sample_weights[y == 1]
weights_0 = weights_0 / weights_0.sum()
weights_1 = weights_1 / weights_1.sum()
X_0 = self._resample(X_0, num_0_samples, weights_0)
X_1 = self._resample(X_1, num_1_samples, weights_1)
X = np.vstack([X_0, X_1])
y = np.array([0] * X_0.shape[0] + [1] * X_1.shape[0])
idxs = [i for i in range(len(y))]
random.shuffle(idxs)
X = X[idxs]
y = y[idxs]
return X, y
class LigandDiscoveryBaselineClassifier(object):
def __init__(self):
self.model = BaselineClassifier()
def fit(self, X, y):
self.model.fit(X, y)
def predict_proba(self, X):
y_hat = self.model.predict_proba(X)
return y_hat
def predict(self, X):
y_hat = self.model.predict(X)
return y_hat
class BaselineClassifierReducer(object):
def __init__(self):
self.top_cuts = [50, 100, 250, 500]
def fit(self, X, y, promiscuity_counts):
self.baseline_classifiers = [
LigandDiscoveryBaselineClassifier() for _ in range(len(self.top_cuts))
]
for i, top_cut in enumerate(self.top_cuts):
idxs = []
for j, pc in enumerate(promiscuity_counts):
if pc > top_cut:
continue
idxs += [j]
X_ = X[idxs]
y_ = y[idxs]
if np.sum(y_) > 0:
self.baseline_classifiers[i].fit(X_, y_)
else:
self.baseline_classifiers[i] = None
R = []
for model in self.baseline_classifiers:
if model is None:
y_hat = [0] * precalc_embeddings_reference.shape[0]
else:
y_hat = list(model.predict_proba(precalc_embeddings_reference)[:, 1])
R += [y_hat]
_X_transformed_reference = np.array(R).T
self._kneigh_regressor = KNeighborsRegressor(n_neighbors=1)
self._kneigh_regressor.fit(
precalc_embeddings_reference, _X_transformed_reference
)
def transform(self, X):
X = self._kneigh_regressor.predict(X)
return X
def fit_transform(self, X, y, promiscuity_counts):
self.fit(X, y, promiscuity_counts)
return self.transform(X)
class LigandDiscoveryClassifier(object):
def __init__(self):
pass
def fit(self, X, y, promiscuity_counts):
load_tabpfn_classifier()
tabpfn_model.remove_models_from_memory()
n_components = int(min(np.sum(y), 100))
self.reducer = LOL(n_components=n_components)
self.balancer = BinaryBalancer(0.5)
X = self.reducer.fit_transform(X, y)
X, y = self.balancer.transform(X, y, promiscuity_counts=promiscuity_counts)
tabpfn_model.fit(X, y)
def predict_proba(self, X):
X = self.reducer.transform(X)
y_hat = tabpfn_model.predict_proba(X)
return y_hat
def predict(self, X):
X = self.reducer.transform(X)
y_hat = tabpfn_model.predict(X)
return y_hat
class HitSelector(object):
def __init__(self, uniprot_acs):
self._valid_prots = set(pid_prom.keys())
self.uniprot_acs = [pid for pid in uniprot_acs if pid in self._valid_prots]
self.fids = fids
self.pids = self.uniprot_acs
self._fid_prom = []
for fid in self.fids:
if fid in fid_prom:
self._fid_prom += [fid_prom[fid]]
else:
self._fid_prom += [0]
def select(self, min_prop_hit_proteins=0, max_hit_fragments=100):
min_hit_proteins = int(min_prop_hit_proteins * len(self.uniprot_acs))
my_hits_dict = collections.defaultdict(int)
pids_set = set(self.uniprot_acs)
for k, _ in hits.items():
if k[0] in pids_set:
my_hits_dict[k[1]] += 1
my_hits = []
for fid in self.fids:
if fid in my_hits_dict:
my_hits += [my_hits_dict[fid]]
else:
my_hits += [0]
y = []
for h in my_hits:
if h == 0:
y += [0]
else:
if h >= min_hit_proteins:
y += [1]
else:
y += [0]
data = {"fid": self.fids, "prom": self._fid_prom, "hits": my_hits, "y": y}
if np.sum(data["y"]) > max_hit_fragments:
promiscuity_ranks = rankdata(data["prom"], method="ordinal")
promiscuity_ranks = promiscuity_ranks / np.max(promiscuity_ranks)
data_ = pd.DataFrame(data)
data_["ranks"] = promiscuity_ranks
data_ = data_.sort_values(by="ranks", ascending=True)
data_1 = data_[data_["y"] == 1]
data_1 = data_1.head(max_hit_fragments)
fids_1 = set(data_1["fid"])
y = []
for fid in data["fid"]:
if fid in fids_1:
y += [1]
else:
y += [0]
data["y"] = y
data = pd.DataFrame(data)
return data
class HitSelectorByOverlap(object):
def __init__(self, uniprot_acs, tfidf):
self._valid_prots = set(pid_prom.keys())
self.uniprot_acs = [pid for pid in uniprot_acs if pid in self._valid_prots]
self.fids = fids
self.pids = self.uniprot_acs
self._fid_prom = []
for fid in self.fids:
if fid in fid_prom:
self._fid_prom += [fid_prom[fid]]
else:
self._fid_prom += [0]
self.tfidf = tfidf
self.fid2pid = collections.defaultdict(list)
for k, v in hits.items():
self.fid2pid[k[1]] += [(k[0], v)]
def select_without_tfidf(self, max_hit_fragments, max_fragment_promiscuity):
protein_overlaps = []
my_hits = []
for i, fid in enumerate(self.fids):
prom = self._fid_prom[i]
if prom > max_fragment_promiscuity:
my_hits += [-1]
protein_overlaps += [-1]
else:
if fid in self.fid2pid:
all_prots = [x[0] for x in self.fid2pid[fid]]
sel_prots = list(set(self.uniprot_acs).intersection(all_prots))
my_hits += [len(sel_prots)]
protein_overlaps += [len(sel_prots) / len(all_prots)]
else:
my_hits += [0]
protein_overlaps += [0]
y = [0] * len(fids)
idxs = np.argsort(protein_overlaps)[::-1]
idxs = idxs[:max_hit_fragments]
for idx in idxs:
if protein_overlaps[idx] == 0:
continue
y[idx] = 1
y = np.array(y)
protein_overlaps = np.array(protein_overlaps)
y[protein_overlaps == -1] = -1
data = {"fid": self.fids, "prom": self._fid_prom, "hits": my_hits, "y": list(y)}
return pd.DataFrame(data)
def select_with_tfidf(self, max_hit_fragments, max_fragment_promiscuity):
corpus = []
my_hits = []
for i, fid in enumerate(self.fids):
prom = self._fid_prom[i]
if prom > max_fragment_promiscuity:
my_hits += [-1]
corpus += [""]
else:
if fid in self.fid2pid:
all_prots = [x[0] for x in self.fid2pid[fid]]
sel_prots = list(set(self.uniprot_acs).intersection(all_prots))
my_hits += [len(sel_prots)]
corpus += [
" ".join(
[x[0] for x in self.fid2pid[fid] for _ in range(int(x[1]))]
)
]
else:
my_hits += [0]
corpus += [""]
vectorizer = TfidfVectorizer(min_df=1, lowercase=False)
tfidf_matrix = vectorizer.fit_transform(corpus).toarray()
feature_names = vectorizer.get_feature_names_out()
idxs = []
for i, n in enumerate(feature_names):
if n in self.uniprot_acs:
idxs += [i]
all_vals = np.sum(tfidf_matrix, axis=1)
sel_vals = np.sum(tfidf_matrix[:, idxs], axis=1)
prop_vals = []
for s, a in zip(sel_vals, all_vals):
if a == 0:
prop_vals += [0]
else:
prop_vals += [s / a]
y = [0] * len(fids)
idxs = np.argsort(prop_vals)[::-1]
idxs = idxs[:max_hit_fragments]
for idx in idxs:
if prop_vals[idx] == 0:
continue
y[idx] = 1
y = np.array(y)
my_hits = np.array(my_hits)
y[my_hits == -1] = -1
data = {
"fid": self.fids,
"prom": self._fid_prom,
"hits": list(my_hits),
"y": list(y),
}
return pd.DataFrame(data)
def select(self, max_hit_fragments, max_fragment_promiscuity):
if self.tfidf:
return self.select_with_tfidf(
max_hit_fragments=max_hit_fragments,
max_fragment_promiscuity=max_fragment_promiscuity,
)
else:
return self.select_without_tfidf(
max_hit_fragments=max_hit_fragments,
max_fragment_promiscuity=max_fragment_promiscuity,
)
class OnTheFlyModel(object):
def __init__(self, verbose=False):
self.verbose = verbose
self.fragment_embedder = fragment_embedder
self.precalc_embeddings = precalc_embeddings
self.precalc_embeddings_reference = precalc_embeddings_reference
self.baseline_classifier = LigandDiscoveryBaselineClassifier()
self.classifier = LigandDiscoveryClassifier()
self.fids = fids
self._valid_prots = set(pid_prom.keys())
self._fid_prom = []
for fid in self.fids:
if fid in fid_prom:
self._fid_prom += [fid_prom[fid]]
else:
self._fid_prom += [0]
def _check_prots(self, uniprot_acs):
for pid in uniprot_acs:
if pid not in self._valid_prots:
raise Exception(
"{0} protein is not amongst our screening hits".format(pid)
)
def _calculate_percentiles(self, y, yref):
sorted_yref = np.sort(yref)
percentiles = [
np.searchsorted(sorted_yref, yi, side="right") / len(yref) for yi in y
]
return percentiles
def estimate_performance(self, y, baseline=True, n_splits=10):
try:
promiscuity_counts = np.array(self._fid_prom)
y = np.array(y)
mask = y != -1
precalc_embeddings = self.precalc_embeddings[mask]
y = y[mask]
if np.sum(y) < 2:
if self.verbose:
st.write("Not enough positives data")
return None, None
skf = StratifiedShuffleSplit(
n_splits=n_splits, test_size=0.2, random_state=42
)
aurocs = []
for train_idx, test_idx in skf.split(precalc_embeddings, y):
X_train = precalc_embeddings[train_idx]
X_test = precalc_embeddings[test_idx]
prom_counts_train = promiscuity_counts[train_idx]
y_train = y[train_idx]
y_test = y[test_idx]
if baseline:
self.baseline_classifier.fit(X_train, y_train)
y_hat = self.baseline_classifier.predict_proba(X_test)[:, 1]
else:
self.classifier.fit(X_train, y_train, prom_counts_train)
y_hat = self.classifier.predict_proba(X_test)[:, 1]
auroc = roc_auc_score(y_test, y_hat)
if self.verbose:
st.write(auroc)
aurocs += [auroc]
return np.median(aurocs), median_abs_deviation(aurocs)
except Exception as e:
if self.verbose:
st.write("AUROC estimation went wrong", e)
return None, None
def estimate_performance_on_train(self, y, baseline=True):
y = np.array(y)
mask = y != -1
y = y[mask]
X = self.precalc_embeddings[mask]
promiscuity_counts = np.array(self._fid_prom)[mask]
if baseline:
self.baseline_classifier.fit(X, y)
y_hat = self.baseline_classifier.predict_proba(X)[:, 1]
else:
y_hat = self.classifier.fit(X, y, promiscuity_counts)
y_hat = self.classifier.predict_proba(X)[:, 1]
auroc = roc_auc_score(y, y_hat)
return auroc
def fit(self, y, baseline=False):
y = np.array(y)
mask = y != -1
y = y[mask]
X = self.precalc_embeddings[mask]
promiscuity_counts = np.array(self._fid_prom)[mask]
if not baseline:
self.classifier.fit(X, y, promiscuity_counts)
else:
self.baseline_classifier.fit(X, y)
self._is_fitted_baseline = baseline
def predict_proba(self, smiles_list):
X = fragment_embedder.transform(smiles_list)
if not self._is_fitted_baseline:
y_hat = self.classifier.predict_proba(X)
else:
y_hat = self.baseline_classifier.predict_proba(X)
return y_hat
def predict(self, smiles_list):
X = fragment_embedder.transform(smiles_list)
if not self._is_fitted_baseline:
y_hat = self.classifier.predict(X)
else:
y_hat = self.baseline_classifier.predict(X)
return y_hat
def predict_proba_on_train(self):
X = self.precalc_embeddings
if not self._is_fitted_baseline:
y_hat = self.classifier.predict_proba(X)
else:
y_hat = self.baseline_classifier.predict_proba(X)
return y_hat
def predict_on_train(self):
X = self.precalc_embeddings
if not self._is_fitted_baseline:
y_hat = self.classifier.predict(X)
else:
y_hat = self.baseline_classifier.predict(X)
return y_hat
def predict_proba_and_tau(self, smiles_list):
sample_indices = np.random.choice(
self.precalc_embeddings_reference.shape[0], size=1000, replace=False
)
X = fragment_embedder.transform(smiles_list)
if not self._is_fitted_baseline:
y_hat = self.classifier.predict_proba(X)[:, 1]
reference_y_hat = self.classifier.predict_proba(
self.precalc_embeddings_reference
)[sample_indices, 1]
train_y_hat = self.classifier.predict_proba(self.precalc_embeddings)[:, 1]
else:
y_hat = self.baseline_classifier.predict_proba(X)[:, 1]
reference_y_hat = self.baseline_classifier.predict_proba(
self.precalc_embeddings_reference
)[sample_indices, 1]
train_y_hat = self.baseline_classifier.predict_proba(
self.precalc_embeddings
)[:, 1]
tau_ref = self._calculate_percentiles(y_hat, reference_y_hat)
tau_train = self._calculate_percentiles(y_hat, train_y_hat)
return y_hat, tau_ref, tau_train
def evaluate_predictive_capacity(model, uniprot_acs, tfidf):
prom_cuts = []
hit_cuts = []
aurocs = []
n_pos = []
n_tot = []
for prom_cut in [50, 100, 250, 500]:
for hit_cut in [10, 50, 100, 200]:
prom_cuts += [prom_cut]
hit_cuts += [hit_cut]
data = HitSelectorByOverlap(uniprot_acs=uniprot_acs, tfidf=tfidf).select(
hit_cut, prom_cut
)
n_pos += [len(data[data["y"] == 1])]
n_tot += [len(data[data["y"] != -1])]
auroc = model.estimate_performance(data["y"], baseline=True, n_splits=10)
aurocs += [auroc[0]]
data = {
"hit_cut": hit_cuts,
"prom_cut": prom_cuts,
"n_pos": n_pos,
"n_tot": n_tot,
"auroc": aurocs,
}
return pd.DataFrame(data)
def evaluate_predictive_capacity_aggregate(
model, uniprot_acs, tfidf, auroc_percentile=75
):
res = evaluate_predictive_capacity(
model=model, uniprot_acs=uniprot_acs, tfidf=tfidf
)
aurocs = []
for auroc in list(res["auroc"]):
if str(auroc) == "nan":
aurocs += [0.5]
else:
aurocs += [float(auroc)]
return np.percentile(aurocs, auroc_percentile)
class CommunityDetector(object):
def __init__(self, auroc_cut=0.7, tfidf=True):
self.auroc_cut = auroc_cut
self.tfidf = tfidf
def community_subgraphs(self, graph):
partition = community_louvain.best_partition(
graph, randomize=False, random_state=42
)
clusters = collections.defaultdict(list)
for k, v in partition.items():
clusters[v] += [k]
clusters = [tuple(sorted(v)) for k, v in clusters.items()]
clusters = set(clusters)
clusters = sorted(clusters, key=lambda x: -len(x))
subgraphs = []
for nodes in clusters:
subgraphs += [graph.subgraph(list(nodes)).copy()]
return subgraphs
def accept_graph(self, model, graph):
uniprot_acs = graph.nodes()
if len(uniprot_acs) == 1:
return True
auroc = evaluate_predictive_capacity_aggregate(
model=model, uniprot_acs=uniprot_acs, tfidf=self.tfidf
)
if auroc > self.auroc_cut:
return True
return False
def select_subgraphs(self, model, graph):
if self.accept_graph(model, graph):
result = {"ok": [graph], "ko": []}
return result
acc_subgraphs = []
rej_subgraphs_0 = []
for subgraph in self.community_subgraphs(graph):
if self.accept_graph(model, subgraph):
acc_subgraphs += [subgraph]
else:
rej_subgraphs_0 += [subgraph]
rej_subgraphs_1 = []
for rej_subgraph in rej_subgraphs_0:
for subgraph in self.community_subgraphs(rej_subgraph):
if self.accept_graph(model, subgraph):
acc_subgraphs += [subgraph]
else:
rej_subgraphs_1 += [subgraph]
rej_subgraphs_2 = []
for rej_subgraph in rej_subgraphs_1:
for subgraph in self.community_subgraphs(rej_subgraph):
if self.accept_graph(model, subgraph):
acc_subgraphs += [subgraph]
else:
rej_subgraphs_2 += [subgraph]
rej_subgraphs = rej_subgraphs_2
result = {"ok": acc_subgraphs, "ko": rej_subgraphs}
return result
def cluster(self, model, graph):
result_graph = self.select_subgraphs(model, graph)
ok_list = [[n for n in g.nodes()] for g in result_graph["ok"]]
ko_list = [[n for n in g.nodes()] for g in result_graph["ko"]]
result = {
"ok": sorted(ok_list, key=lambda x: -len(x)),
"ko": sorted(ko_list, key=lambda x: -len(x)),
}
return result
def task_evaluator(model, data, do_auroc=True):
try:
y = np.array(data["y"])
mask = y != -1
model.baseline_classifier.fit(precalc_embeddings[mask], y[mask])
y_hat_ref = np.array(
model.baseline_classifier.predict_proba(precalc_embeddings_reference)[:, 1]
)
rho = np.nanmean(
[
pearsonr(y_hat_ref, promiscuity_reference_predictions[:, j])[0]
for j in range(promiscuity_reference_predictions.shape[1])
]
)
if do_auroc:
auroc = model.estimate_performance(data["y"], baseline=True, n_splits=10)
else:
auroc = (None, None)
prom = np.mean(data[data["y"] == 1]["prom"])
hits = np.mean(data[data["y"] == 1]["hits"])
result = {"auroc": auroc, "prom": prom, "hits": hits, "ref_rho": rho}
return result
except:
return None
|