3
File size: 21,426 Bytes
0f91c49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c429fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f91c49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c429fd
0f91c49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# regular imports
import os
import sys
import csv
import collections
import pandas as pd
import streamlit as st
import json
import gc
import requests
from PIL import Image
from io import BytesIO
from io import StringIO
from datasets import load_dataset

st.set_page_config(
    page_title="Ligand Discovery 3: Protein-set Enrichment Analysis",
    page_icon=":home:",
    layout="wide", # "centered",
    initial_sidebar_state="expanded"
)

st.markdown("""
  <style>
    .css-13sdm1b.e16nr0p33 {
      margin-top: -75px;
    }
  </style>
""", unsafe_allow_html=True)

hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            #header {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True) 

proteins_set = None

ROOT = os.path.abspath(os.path.dirname(__file__))
# TMP = os.path.join(ROOT, "tmp")
# if not os.path.exists(TMP):
#    os.mkdir(TMP)

MIN_SET_SIZE = 1
PROFILE_TYPE = "Fragment"
OVERVIEW_PVALUE_CUTOFF = 0.05

# relative imports
# sys.path.append(os.path.join(ROOT, "../src/"))
# from util import listdir_util

def listdir_util(path):
    for d in os.listdir(path):
        if d.startswith("_"):
            continue
        else:
            yield d

# import metadata
from proteome_meta import task_suf
from proteome_meta import annotation_type_dict
from proteome_meta import annotation_dict
from proteome_meta import universe_dict


# path to results and original data
PATH = os.path.abspath(os.path.join(ROOT, "../results/proteins/"))
DATA = os.path.abspath(os.path.join(ROOT, "../data"))
DATA2 = 'ligdis/data'
mySeparator = "/"
CACHE = os.path.abspath(os.path.join(ROOT, "../cache"))

# generic inputs

# protein id to gene name

dataset = load_dataset('ligdis/data', data_files={"general/pid2name_primary.tsv"}, delimiter='\t')
df = dataset['train'].to_pandas()  
pid2name = dict(zip(df.iloc[:, 0], df.iloc[:, 1]))
name2pid = dict(zip(df.iloc[:, 1], df.iloc[:, 0]))
del dataset, df  # Delete the variable
gc.collect() 

def pid2gene(x):
    if x in pid2name:
        return pid2name[x]
    else:
        return x


def gene2pid(x):
    if x in name2pid:
        return name2pid[x]
    else:
        return x


def pretty_term(x):
    x = x.title()
    if x.endswith("]"):
        x = x.split(" [")[0]
    return x

def hf_tsv_2_pandas_df(hf_repo, data_file, myHeader):

    url = '/'.join(("https://huggingface.co/datasets", hf_repo, "resolve/main", data_file))
    response = requests.get(url)

    if response.status_code == 200:
        tsv_data = StringIO(response.text) # Use StringIO to treat the string content as a file-like object    
        df = pd.read_csv(tsv_data, sep='\t', header = myHeader) # Load the TSV file into a pandas DataFrame    
    else:
        df = pd.DataFrame()
        st.write("Error loading dataset from hf_repo: ", hf_repo, " and data_file: ", data_file)
    return(df)

def load_hf_json(json_url):
        response = requests.get(json_url)
        if response.status_code == 200:
            out = response.json()
        else:
            print("Failed to retrieve ", json_url, " file. HTTP Status Code: ", response.status_code)
        return(out)

def load_hf_image(image_url):
    response = requests.get(image_url)
    if response.status_code == 200:
        img = Image.open(BytesIO(response.content))
    else:
        print("Failed to retrieve image. HTTP Status Code:", response.status_code)
    return(img)


# side bar

st.sidebar.title("Ligand Discovery 3: Protein-set Enrichment Analysis")

# signatures (aka profiles)
st.sidebar.header("Select a fragment")

profile_type = PROFILE_TYPE
profile_type_subfolder = profile_type.lower()

# @st.cache_data
# def get_sorted_fids():
#    fids = []
#    for fid in listdir_util(os.path.join(DATA, "signatures", "proteins", "fragment")):
#        fids += [fid]
#    fids = sorted(fids)
#    return fids
    
with open("fid.txt", "r") as file:
    lines = file.readlines()
# Remove the newline characters (\n) from each line
fids = [line.strip() for line in lines]

# fids = get_sorted_fids()
profile = st.sidebar.selectbox("Fragment identifier", options=fids)
profile_subfolder = profile
all_cases = fids
draw_fragment = True

st.sidebar.header("Choose a type of analysis")

type_of_analysis = st.sidebar.radio(
    "Type of analysis", options=["Overview", "Detailed"]
)

# OVERVIEW TYPE OF ANALYSYS

if type_of_analysis == "Overview":

    st.header("Enrichment overview for {0} {1}".format(profile_type.lower(), profile))    
    view = st.sidebar.radio("Select View", options=["Table", "Plot"])
    
    df = hf_tsv_2_pandas_df(hf_repo="ligdis/cache_overview", data_file="{0}.tsv".format(profile), myHeader=0)

    # df = pd.read_csv(os.path.join(CACHE, "overview", "{0}.tsv".format(profile)), sep="\t")

    if view == "Table":

        columns = st.columns(4)

        prot2idx = collections.defaultdict(list)
        for i,r in enumerate(list(df["edge"])):
            for x in r.split(","):
                gn = pid2gene(x)
                prot2idx[gn] += [i]
        all_proteins_ = sorted(prot2idx.keys())
        ann2idx = collections.defaultdict(list)
        for i,r in enumerate(df["term"]):
            ann2idx[r] += [i]
        all_annotations_ = sorted(ann2idx.keys())

        type2idx = collections.defaultdict(list)
        for i,r in enumerate(list(df["type"])):
            type2idx[r] += [i]
        all_types_ = sorted(type2idx.keys())

        subtype2idx = collections.defaultdict(list)
        for i,r in enumerate(list(df["subtype"])):
            subtype2idx[r] += [i]
        all_subtypes_ = sorted(subtype2idx.keys())

        selected_proteins = columns[0].multiselect("Filter by proteins in leading edge ({0} unique proteins)".format(len(all_proteins_)), options=all_proteins_)
        selected_annotations = columns[1].multiselect("Select annotations", options=all_annotations_)
        selected_subtypes = columns[2].multiselect("Filter by annotation subtype", options=all_subtypes_)
        selected_types = columns[3].multiselect("Filter by annotation type", options=all_types_)
        
        keep_idxs = []
        if selected_proteins is not None:
            for x in selected_proteins:
                for idx in prot2idx[x]:
                    keep_idxs += [idx]
        
        if selected_annotations is not None:
            for x in selected_annotations:
                for idx in ann2idx[x]:
                    keep_idxs += [idx]

        if selected_subtypes is not None:
            for x in selected_subtypes:
                for idx in subtype2idx[x]:
                    keep_idxs += [idx]
        
        if selected_types is not None:
            for x in selected_types:
                for idx in type2idx[x]:
                    keep_idxs += [idx]
        
        if keep_idxs:
            keep_idxs = sorted(set(keep_idxs))
            df = df.iloc[keep_idxs]

        df["edge_genes"] = [" ".join([pid2gene(x) for x in r.split(",")]) for r in list(df["edge"])]

        df_view = df[["term", "overlap", "setsize", "score", "pval", "edge_genes", "subtype", "type"]]
        df_view = df_view.rename(columns = {
            "term": "Term",
            "overlap": "Edge size",
            "setsize": "Set size",
            "score": "Score",
            "pval": "P-value",
            "edge_genes": "Leading edge",
            "subtype": "Category subtype",
            "type": "Category type"
        })
        df_view["rank"] = [i+1 for i in range(df_view.shape[0])]
        df_view = df_view.set_index("rank")

        st.dataframe(df_view.reset_index(drop=True), height=2000)
    
    else:
        # st.image(os.path.join(CACHE, "overview", "{0}.png".format(profile)))
        image_url = ''.join(("https://huggingface.co/datasets/ligdis/cache_overview/resolve/main/", "{0}.png".format(profile), "?download=true"))  # Replace with actual URL 
        st.image(image_url)

## DETAILED TYPE OF ANALYSIS

else:

    def annotations_selector():
        st.sidebar.header("Select protein annotation category")

        annotation_types = [
            "Sequence",
            "Functions",
            "Processes and pathways",
            "Localization",
            "Drugs and Diseases",
        ]
        annotation_type = st.sidebar.radio("Type of annotation", annotation_types)

        annotations = annotation_type_dict[annotation_type]

        annotation = st.sidebar.selectbox("Annotation source", options=annotations)
        annotation_subfolder = annotation_dict[annotation]

        return annotation, annotation_subfolder, annotation_type, annotations
    
    def universe_selector():
        preselected="HEK293T Core"
        universe = preselected
        universe_subfolder = universe_dict[universe]
        return universe, universe_subfolder

    annotation, annotation_subfolder, annotation_type, annotations = (
        annotations_selector()
    )
    
    universe, universe_subfolder = universe_selector()

    st.header("Fragment: {0} & Category: {2} ({1})".format(profile_subfolder, annotation_type, annotation))

#    cache_folder = os.path.join(CACHE, "detailed", profile_subfolder, annotation_subfolder)
    cache_folder = '/'.join(("https://huggingface.co/datasets/ligdis",  '_'.join(("cache_detailed", profile_subfolder)), "resolve/main", annotation_subfolder ))

    # read metrics
       
    metrics_json_url = '/'.join((cache_folder, "metrics.json"))                
    metrics = load_hf_json(metrics_json_url)
            
#    with open(os.path.join(cache_folder, "metrics.json"), "r") as f:
#        metrics = json.load(f)

    metric_cols = st.columns(3)
    metric_cols[0].metric(
        "{0} profile: {1}".format(profile_type, profile),
        value="{0} proteins".format(metrics["signature_size"]),
    )
    metric_cols[1].metric(
        "{0}: {1}".format(annotation_type, annotation),
        value="{0} categories".format(metrics["annotations_size"]),
    )
    metric_cols[2].metric(metrics["title"], value=round(metrics["value"], 2))

    columns = st.columns(6)
    view = columns[0].radio("View", options=["Tables", "Basic plots", "Advanced plots"])

    if view == "Tables":

        p_value_cutoff = columns[2].number_input("P-value cutoff", value=0.05, min_value=0., max_value=1., format="%.3f")
        min_edge_size = columns[3].number_input("Minimum leading edge size", value=5, min_value=0, max_value=10000)
        max_edge_size = columns[4].number_input("Maximum leading edge size", value=5000, min_value=1, max_value=10000)
        protein_label = "Gene Name"
        if protein_label == "Gene Name":
            convert_to_gene = True
        else:
            convert_to_gene = False

#        available_selections = json.load(open(os.path.join(cache_folder, "selections.json"), "r"))      
        selections_json_url = '/'.join((cache_folder, "selections.json"))        
        available_selections = load_hf_json(selections_json_url)
        
        all_annotations = available_selections["all_annotations"]
        available_proteins = available_selections["available_proteins"]

        select_columns = st.columns(3)
        selected_annotations = select_columns[2].multiselect(
            "Select annotation categories", options=available_proteins
        )

        selected_proteins = select_columns[0].multiselect(
            "Filter by proteins found in at least one annotation term ({0})".format(
                len(available_proteins)
            ),
            options=available_proteins,
        )
        
        task_filename = ''.join((profile, "_val_log2fc.tsv"))
        
        ligdis_annotations_repo = '/'.join(('ligdis', annotation_subfolder))
        annotations_json =  '/'.join((profile_type_subfolder, profile_subfolder, task_filename.split(".tsv")[0], 'annotations.json'))
        annotations_json_url = ''.join(("https://huggingface.co/datasets/", ligdis_annotations_repo, "/resolve/main/", annotations_json))
        
        annotations_ = load_hf_json(annotations_json_url)

        if selected_proteins:

            if convert_to_gene:
                selected_proteins = [gene2pid(x) for x in selected_proteins]
            selected_proteins = set(selected_proteins)
            if not selected_annotations:
                for k, v in annotations_.items():
                    if len(selected_proteins.intersection(v)) > 0:
                        selected_annotations += [k]
            if not selected_annotations:
                st.warning(
                    "No available annotations for any of your proteins of interest..."
                )

#        result = pd.read_csv(os.path.join(cache_folder, "result.tsv"), sep="\t")
        
        ligdis_cache_detailed_fragment_repo = '_'.join(("ligdis/cache_detailed", profile_subfolder))
        result_file = '/'.join((annotation_subfolder, "result.tsv"))
        
        result = hf_tsv_2_pandas_df(hf_repo = ligdis_cache_detailed_fragment_repo, data_file = result_file, myHeader=0)
        
        result = result[result["leading_edge_size"] >= min_edge_size]
        result = result[result["leading_edge_size"] <= max_edge_size]
        result = result.reset_index(drop=True)

        leading_proteins = available_selections["leading_proteins"]

        selected_leading_proteins = select_columns[1].multiselect(
            "Filter by proteins found in at least one leading edge",
            options = leading_proteins)

        if selected_leading_proteins:

            prot2idx = collections.defaultdict(list)
            for i, r in enumerate(list(result["leading_edge"])):
                if str(r) == "nan":
                    continue
                for x in r.split(","):
                    prot2idx[pid2gene(x)] += [i]

            idxs = []
            for v in selected_leading_proteins:
                for x in prot2idx[v]:
                    idxs += [x]
            idxs = sorted(set(idxs))
            result = result.iloc[idxs]

#        df_merge = pd.read_csv(os.path.join(cache_folder, "df_merge.tsv"), sep="\t")
        df_merge_file = '/'.join((annotation_subfolder, "df_merge.tsv"))       
        df_merge = hf_tsv_2_pandas_df(hf_repo=ligdis_cache_detailed_fragment_repo, data_file=df_merge_file, myHeader=0)
        
        type_of_task = metrics["type_of_task"]
        if type_of_task == "ranksum":

            sort_by = "NES"
            if sort_by == "NES":
                sort_by_nes = True
            else:
                sort_by_nes = False

            direction = "Up"
            if direction == "Up":
                is_up = True
            else:
                is_up = False

            df = result.copy()
            df = df.rename(columns = {"Term": "term"})

            df_merge = df_merge[["term", "score_mean"]]

            df = df.merge(df_merge, how="left", on="term")

            df = df[df["leading_edge"].notnull()]

            df["edge_genes"] = [" ".join([pid2gene(x) for x in r.split(",")]) for r in list(df["leading_edge"])]

            df = df[["term","leading_edge_size",  "geneset_size", "nes", "pval", "fdr", "score_mean", "edge_genes", "leading_edge"]]

            if selected_annotations:
                df = df[df["term"].isin(selected_annotations)]

            if is_up:
                df = df[df["nes"] >= 0]
            else:
                df = df[df["nes"] < 0]
            if sort_by_nes:
                if is_up:
                    df = df.sort_values(by="nes", ascending=False)
                else:
                    df = df.sort_values(by="nes", ascending=True)
            else:
                df = df.sort_values(by="pval")

            df = df.reset_index(drop=True)

            df = df.rename(columns = {
                "term": "Term",
                "leading_edge_size": "Edge size",
                "geneset_size": "Set size",
                "nes": "Score",
                "pval": "P-value",
                "fdr": "FDR",
                "score_mean": "Mean score",
                "edge_genes": "Leading edge",
            })

        st.dataframe(df[[c for c in list(df.columns)[:-1] if c != "Mean score"]].reset_index(drop=True))

        term = st.selectbox("Explore term...", df["Term"])

        if term is not None:

#            signature_ori = pd.read_csv(os.path.join(results_path, "signature.tsv"), delimiter="\t", header=None)
            ligdis_ontology_repo = '/'.join(("ligdis", annotation_subfolder))
            ontology_signature_file = '/'.join((profile_type_subfolder, profile_subfolder,  task_filename.split(".tsv")[0],  "signature.tsv"))            
            signature_ = hf_tsv_2_pandas_df(hf_repo=ligdis_ontology_repo, data_file=ontology_signature_file, myHeader=None )

#            signature_file = os.path.abspath(os.path.join(DATA,"signatures","proteins",profile_type_subfolder,profile_subfolder,task_filename))
            ligdis_data_repo = '/'.join(("ligdis", "data"))
            fragment_signature_file = '/'.join(("signatures/proteins/fragment", profile_subfolder, task_filename))        
        
           # Explore term

            t_values = {}
            for r in signature_.values:
                t_values[r[0]] = r[1]
            o_values = {}
#            signature_original = pd.read_csv(signature_file, delimiter="\t", header=None)    
            signature_original = hf_tsv_2_pandas_df(hf_repo=ligdis_data_repo, data_file=fragment_signature_file, myHeader=None)
            
            for r in signature_original.values:
                o_values[r[0]] = r[1]

            cols = st.columns([0.15, 1])

            col = cols[0]

            annotations_size = len(annotations_[term])
            signature_size = len(signature_)

            df_filt = df[df["Term"] == term]
            leading_edge = list(df_filt["leading_edge"])[0]
            if str(leading_edge) == "nan":
                leading_edge = []
            else:
                leading_edge = leading_edge.split(",")
            display_proteins = col.radio(
                "Display proteins",
                [
                    "Leading edge ({0})".format(len(leading_edge)),
                    "In category ({0})".format(annotations_size),
                    "Full profile ({0})".format(signature_size),
                ],
            )
            if "Leading" in display_proteins:
                proteins = leading_edge
            elif "category" in display_proteins:
                proteins = annotations_[term]
            else:
                proteins = signature_[0]
            o_values = [o_values[pid] for pid in proteins]
            t_values = [t_values[pid] for pid in proteins]

            proteins_set = set(proteins)
            if convert_to_gene:
                genes = [pid2gene(x) for x in proteins]
                label = "Gene Name"
            else:
                label = "UniProtAC"
            dl = pd.DataFrame(
                {"Gene Name": genes, "UniProt AC": proteins, "Log2FC": o_values, "Z-score": t_values}
            )

            sort_by = col.radio(
                "Sort proteins", ["By Z-score", "Alphabetically"]
            )
            if sort_by != "Alphabetically":
                if is_up:
                    dl = dl.sort_values("Z-score", ascending=False)
                else:
                    dl = dl.sort_values("Z-score", ascending=True)
            else:
                dl = dl.sort_values(label)
            dl = dl.reset_index(drop=True)

            col = cols[1]
            col.dataframe(dl.reset_index(drop=True))

    if view == "Basic plots":
        top_plots_number = columns[1].number_input("Maximum number of plots", value=12, min_value=1, max_value=50)
        plot_columns = st.columns(4)

#        with open(os.path.join(cache_folder, "basic", "idx2term.json"), "r") as f:
#            idx2term = json.load(f)
        idx2term_json_url = '/'.join((cache_folder, "basic", "idx2term.json"))        
        idx2term = load_hf_json(idx2term_json_url)

        idxs = [i for i in range(len(idx2term))]

        i = 0
        j = 0

        for idx in idxs:

            if i == len(plot_columns):
                i = 0
            col = plot_columns[i]

            if j == top_plots_number:
                break

#            col.image(os.path.join(cache_folder, "basic", "plot_{0}.png".format(idx)))
            
            image_url = '/'.join((cache_folder, "basic", "plot_{0}.png".format(idx)))   
            col.image(image_url)  # Show the image
            i += 1
            j += 1


    if view == "Advanced plots":
        top_plots_number = columns[1].number_input("Maximum number of plots", value=5, min_value=1, max_value=10)

#        with open(os.path.join(cache_folder, "advanced", "idx2term.json"), "r") as f:
#            idx2term = json.load(f)

        idx2term_json_url = '/'.join((cache_folder, "advanced", "idx2term.json"))        
        idx2term = load_hf_json(idx2term_json_url)
        
        idxs = [i for i in range(len(idx2term))]

        j = 0
        for idx in idxs:
            if j == top_plots_number:
                break

#            st.image(os.path.join(cache_folder, "advanced", "plot_{0}.png".format(idx)))
            image_url = '/'.join((cache_folder, "advanced", "plot_{0}.png".format(idx)))   
            st.image(image_url)  # Show the image
            j += 1