|
|
|
|
|
|
|
from transformers import pipeline, TFTapasForQuestionAnswering, TapasTokenizer |
|
import pandas as pd |
|
import gradio as gr |
|
import tensorflow_probability |
|
|
|
|
|
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-sqa") |
|
tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-finetuned-sqa") |
|
tqa = pipeline(task="table-question-answering", model=model, tokenizer=tokenizer) |
|
table = pd.read_csv('CSLECTURERS.csv') |
|
table = table.astype('str') |
|
|
|
messages = [] |
|
responses = [] |
|
|
|
def anjibot(message, history): |
|
messages.append(message) |
|
conversation = {"text": message, "past_user_input": messages, "generated_responses": responses} |
|
answer = tqa(table=table, query=message)["answer"] |
|
responses.append(answer) |
|
return "AnjiBot: " + answer |
|
|
|
chatbot = gr.ChatInterface(anjibot, title='AnjiBot', description="Anji is unavailable? That girl! Ask me, I may know!") |
|
|
|
chatbot.launch() |