Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -49,6 +49,10 @@ with open("sdxl_loras.json", "r") as file:
|
|
| 49 |
for item in data
|
| 50 |
]
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
device = "cuda"
|
| 53 |
|
| 54 |
state_dicts = {}
|
|
@@ -131,49 +135,20 @@ button.addEventListener('click', function() {
|
|
| 131 |
element.classList.add('selected');
|
| 132 |
});
|
| 133 |
'''
|
| 134 |
-
def update_selection(selected_state: gr.SelectData, sdxl_loras, is_new=False):
|
| 135 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 136 |
-
|
| 137 |
-
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
|
| 138 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 139 |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"
|
| 140 |
-
is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
|
| 141 |
-
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
|
| 142 |
-
|
| 143 |
-
use_with_diffusers = f'''
|
| 144 |
-
## Using [`{lora_repo}`](https://huggingface.co/{lora_repo})
|
| 145 |
-
|
| 146 |
-
## Use it with diffusers:
|
| 147 |
-
'''
|
| 148 |
-
if is_compatible:
|
| 149 |
-
use_with_diffusers += f'''
|
| 150 |
-
from diffusers import StableDiffusionXLPipeline
|
| 151 |
-
import torch
|
| 152 |
-
|
| 153 |
-
model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 154 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
| 155 |
-
pipe.to("cuda")
|
| 156 |
-
pipe.load_lora_weights("{lora_repo}", weight_name="{weight_name}")
|
| 157 |
-
|
| 158 |
-
prompt = "{instance_prompt}..."
|
| 159 |
-
lora_scale= 0.9
|
| 160 |
-
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={{"scale": lora_scale}}).images[0]
|
| 161 |
-
image.save("image.png")
|
| 162 |
-
'''
|
| 163 |
-
elif not is_pivotal:
|
| 164 |
-
use_with_diffusers += "This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with `bmaltais/kohya_ss` LoRA class, check out this [Google Colab](https://colab.research.google.com/drive/14aEJsKdEQ9_kyfsiV6JDok799kxPul0j )"
|
| 165 |
-
else:
|
| 166 |
-
use_with_diffusers += f"This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with sdxl-cog `TokenEmbeddingsHandler` class, check out the [model repo](https://huggingface.co/{lora_repo}#inference-with-🧨-diffusers)"
|
| 167 |
-
use_with_uis = f'''
|
| 168 |
-
## Use it with Comfy UI, Invoke AI, SD.Next, AUTO1111:
|
| 169 |
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
-
- [ComfyUI guide](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
|
| 173 |
-
- [Invoke AI guide](https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/?h=lora#using-loras)
|
| 174 |
-
- [SD.Next guide](https://github.com/vladmandic/automatic)
|
| 175 |
-
- [AUTOMATIC1111 guide](https://stable-diffusion-art.com/lora/)
|
| 176 |
-
'''
|
| 177 |
if(is_new):
|
| 178 |
if(selected_state.index == 0):
|
| 179 |
selected_state.index = -9999
|
|
@@ -182,24 +157,23 @@ def update_selection(selected_state: gr.SelectData, sdxl_loras, is_new=False):
|
|
| 182 |
|
| 183 |
return (
|
| 184 |
updated_text,
|
| 185 |
-
instance_prompt,
|
| 186 |
gr.update(placeholder=new_placeholder),
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
| 191 |
)
|
| 192 |
|
| 193 |
def center_crop_image_as_square(img):
|
| 194 |
-
square_size = min(img.size)
|
| 195 |
|
| 196 |
-
# Calculate the coordinates of the crop box
|
| 197 |
left = (img.width - square_size) / 2
|
| 198 |
top = (img.height - square_size) / 2
|
| 199 |
right = (img.width + square_size) / 2
|
| 200 |
bottom = (img.height + square_size) / 2
|
| 201 |
|
| 202 |
-
# Perform the crop
|
| 203 |
img_cropped = img.crop((left, top, right, bottom))
|
| 204 |
return img_cropped
|
| 205 |
|
|
@@ -230,13 +204,21 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 230 |
del lora_model
|
| 231 |
gc.collect()
|
| 232 |
|
| 233 |
-
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras,
|
| 234 |
global last_lora, last_merged, last_fused, pipe
|
| 235 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 236 |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
| 237 |
face_emb = face_info['embedding']
|
| 238 |
face_kps = draw_kps(face_image, face_info['kps'])
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
#prepare face zoe
|
| 241 |
with torch.no_grad():
|
| 242 |
image_zoe = zoe(face_image)
|
|
@@ -245,12 +227,12 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 245 |
images = [face_kps, image_zoe.resize((height, width))]
|
| 246 |
|
| 247 |
|
| 248 |
-
if(selected_state.index < 0):
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
sdxl_loras = sdxl_loras_new
|
| 254 |
print("Selected State: ", selected_state.index)
|
| 255 |
print(sdxl_loras[selected_state.index]["repo"])
|
| 256 |
if negative == "":
|
|
@@ -342,7 +324,11 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 342 |
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil")
|
| 343 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
|
| 344 |
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
|
| 345 |
-
new_gallery = gr.Gallery(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
gallery = gr.Gallery(
|
| 347 |
#value=[(item["image"], item["title"]) for item in sdxl_loras],
|
| 348 |
label="SDXL LoRA Gallery",
|
|
@@ -359,7 +345,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 359 |
elem_id="selected_lora",
|
| 360 |
)
|
| 361 |
with gr.Row():
|
| 362 |
-
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="
|
| 363 |
button = gr.Button("Run", elem_id="run_button")
|
| 364 |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
| 365 |
community_icon = gr.HTML(community_icon_html)
|
|
@@ -375,43 +361,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 375 |
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight")
|
| 376 |
guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale")
|
| 377 |
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght")
|
| 378 |
-
|
| 379 |
-
with gr.Accordion(
|
| 380 |
-
"Use it with: 🧨 diffusers, ComfyUI, Invoke AI, SD.Next, AUTO1111",
|
| 381 |
-
open=False,
|
| 382 |
-
elem_id="accordion",
|
| 383 |
-
):
|
| 384 |
-
with gr.Row():
|
| 385 |
-
use_diffusers = gr.Markdown("""## Select a LoRA first 🤗""")
|
| 386 |
-
use_uis = gr.Markdown()
|
| 387 |
-
with gr.Accordion("Submit a LoRA! 📥", open=False):
|
| 388 |
-
submit_title = gr.Markdown(
|
| 389 |
-
"### Streamlined submission coming soon! Until then [suggest your LoRA in the community tab](https://huggingface.co/spaces/multimodalart/LoraTheExplorer/discussions) 🤗"
|
| 390 |
-
)
|
| 391 |
-
with gr.Group(elem_id="soon"):
|
| 392 |
-
submit_source = gr.Radio(
|
| 393 |
-
["Hugging Face", "CivitAI"],
|
| 394 |
-
label="LoRA source",
|
| 395 |
-
value="Hugging Face",
|
| 396 |
-
)
|
| 397 |
-
with gr.Row():
|
| 398 |
-
submit_source_hf = gr.Textbox(
|
| 399 |
-
label="Hugging Face Model Repo",
|
| 400 |
-
info="In the format `username/model_id`",
|
| 401 |
-
)
|
| 402 |
-
submit_safetensors_hf = gr.Textbox(
|
| 403 |
-
label="Safetensors filename",
|
| 404 |
-
info="The filename `*.safetensors` in the model repo",
|
| 405 |
-
)
|
| 406 |
-
with gr.Row():
|
| 407 |
-
submit_trigger_word_hf = gr.Textbox(label="Trigger word")
|
| 408 |
-
submit_image = gr.Image(
|
| 409 |
-
label="Example image (optional if the repo already contains images)"
|
| 410 |
-
)
|
| 411 |
-
submit_button = gr.Button("Submit!")
|
| 412 |
-
submit_disclaimer = gr.Markdown(
|
| 413 |
-
"This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space."
|
| 414 |
-
)
|
| 415 |
order_gallery.change(
|
| 416 |
fn=swap_gallery,
|
| 417 |
inputs=[order_gallery, gr_sdxl_loras],
|
|
@@ -420,18 +370,18 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 420 |
)
|
| 421 |
gallery.select(
|
| 422 |
fn=update_selection,
|
| 423 |
-
inputs=[gr_sdxl_loras],
|
| 424 |
-
outputs=[prompt_title, prompt,
|
| 425 |
-
queue=False,
|
| 426 |
-
show_progress=False
|
| 427 |
-
)
|
| 428 |
-
new_gallery.select(
|
| 429 |
-
fn=update_selection,
|
| 430 |
-
inputs=[gr_sdxl_loras_new, gr.State(True)],
|
| 431 |
-
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis, gallery],
|
| 432 |
queue=False,
|
| 433 |
show_progress=False
|
| 434 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
prompt.submit(
|
| 436 |
fn=check_selected,
|
| 437 |
inputs=[selected_state],
|
|
@@ -445,7 +395,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 445 |
show_progress=False,
|
| 446 |
).success(
|
| 447 |
fn=run_lora,
|
| 448 |
-
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras
|
| 449 |
outputs=[result, share_group],
|
| 450 |
)
|
| 451 |
button.click(
|
|
@@ -461,7 +411,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 461 |
show_progress=False,
|
| 462 |
).success(
|
| 463 |
fn=run_lora,
|
| 464 |
-
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras
|
| 465 |
outputs=[result, share_group],
|
| 466 |
)
|
| 467 |
share_button.click(None, [], [], js=share_js)
|
|
|
|
| 49 |
for item in data
|
| 50 |
]
|
| 51 |
|
| 52 |
+
with open("defaults_data.json", "r") as file:
|
| 53 |
+
lora_defaults = json.load(file)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
device = "cuda"
|
| 57 |
|
| 58 |
state_dicts = {}
|
|
|
|
| 135 |
element.classList.add('selected');
|
| 136 |
});
|
| 137 |
'''
|
| 138 |
+
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
|
| 139 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 140 |
+
new_placeholder = "Type a prompt to use your selected LoRA"
|
|
|
|
| 141 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 142 |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
for lora_list in lora_defaults:
|
| 145 |
+
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
| 146 |
+
face_strength = lora_list.get("face_strength", face_strength)
|
| 147 |
+
image_strength = lora_list.get("image_strength", image_strength)
|
| 148 |
+
weight = lora_list.get("weight", weight)
|
| 149 |
+
depth_control_scale = lora_list.get("depth_control_scale", depth_control_scale)
|
| 150 |
+
negative = lora_list.get("negative", negative)
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
if(is_new):
|
| 153 |
if(selected_state.index == 0):
|
| 154 |
selected_state.index = -9999
|
|
|
|
| 157 |
|
| 158 |
return (
|
| 159 |
updated_text,
|
|
|
|
| 160 |
gr.update(placeholder=new_placeholder),
|
| 161 |
+
face_strength,
|
| 162 |
+
image_strength,
|
| 163 |
+
weight,
|
| 164 |
+
depth_control_scale,
|
| 165 |
+
negative,
|
| 166 |
+
selected_state
|
| 167 |
)
|
| 168 |
|
| 169 |
def center_crop_image_as_square(img):
|
| 170 |
+
square_size = min(img.size)
|
| 171 |
|
|
|
|
| 172 |
left = (img.width - square_size) / 2
|
| 173 |
top = (img.height - square_size) / 2
|
| 174 |
right = (img.width + square_size) / 2
|
| 175 |
bottom = (img.height + square_size) / 2
|
| 176 |
|
|
|
|
| 177 |
img_cropped = img.crop((left, top, right, bottom))
|
| 178 |
return img_cropped
|
| 179 |
|
|
|
|
| 204 |
del lora_model
|
| 205 |
gc.collect()
|
| 206 |
|
| 207 |
+
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 208 |
global last_lora, last_merged, last_fused, pipe
|
| 209 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 210 |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
| 211 |
face_emb = face_info['embedding']
|
| 212 |
face_kps = draw_kps(face_image, face_info['kps'])
|
| 213 |
|
| 214 |
+
for lora_list in lora_defaults:
|
| 215 |
+
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
| 216 |
+
prompt_full = lora_list["model"].get("prompt", None)
|
| 217 |
+
if(prompt_full):
|
| 218 |
+
prompt = prompt_full.replace("<subject>", prompt)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
print("Prompt:", prompt)
|
| 222 |
#prepare face zoe
|
| 223 |
with torch.no_grad():
|
| 224 |
image_zoe = zoe(face_image)
|
|
|
|
| 227 |
images = [face_kps, image_zoe.resize((height, width))]
|
| 228 |
|
| 229 |
|
| 230 |
+
#if(selected_state.index < 0):
|
| 231 |
+
# if(selected_state.index == -9999):
|
| 232 |
+
# selected_state.index = 0
|
| 233 |
+
# else:
|
| 234 |
+
# selected_state.index *= -1
|
| 235 |
+
#sdxl_loras = sdxl_loras_new
|
| 236 |
print("Selected State: ", selected_state.index)
|
| 237 |
print(sdxl_loras[selected_state.index]["repo"])
|
| 238 |
if negative == "":
|
|
|
|
| 324 |
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil")
|
| 325 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
|
| 326 |
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
|
| 327 |
+
#new_gallery = gr.Gallery(
|
| 328 |
+
# label="New LoRAs",
|
| 329 |
+
# elem_id="gallery_new",
|
| 330 |
+
# columns=3,
|
| 331 |
+
# value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False)
|
| 332 |
gallery = gr.Gallery(
|
| 333 |
#value=[(item["image"], item["title"]) for item in sdxl_loras],
|
| 334 |
label="SDXL LoRA Gallery",
|
|
|
|
| 345 |
elem_id="selected_lora",
|
| 346 |
)
|
| 347 |
with gr.Row():
|
| 348 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="A person",, elem_id="prompt")
|
| 349 |
button = gr.Button("Run", elem_id="run_button")
|
| 350 |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
| 351 |
community_icon = gr.HTML(community_icon_html)
|
|
|
|
| 361 |
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight")
|
| 362 |
guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale")
|
| 363 |
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght")
|
| 364 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
order_gallery.change(
|
| 366 |
fn=swap_gallery,
|
| 367 |
inputs=[order_gallery, gr_sdxl_loras],
|
|
|
|
| 370 |
)
|
| 371 |
gallery.select(
|
| 372 |
fn=update_selection,
|
| 373 |
+
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
| 374 |
+
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
queue=False,
|
| 376 |
show_progress=False
|
| 377 |
)
|
| 378 |
+
#new_gallery.select(
|
| 379 |
+
# fn=update_selection,
|
| 380 |
+
# inputs=[gr_sdxl_loras_new, gr.State(True)],
|
| 381 |
+
# outputs=[prompt_title, prompt, prompt, selected_state, gallery],
|
| 382 |
+
# queue=False,
|
| 383 |
+
# show_progress=False
|
| 384 |
+
#)
|
| 385 |
prompt.submit(
|
| 386 |
fn=check_selected,
|
| 387 |
inputs=[selected_state],
|
|
|
|
| 395 |
show_progress=False,
|
| 396 |
).success(
|
| 397 |
fn=run_lora,
|
| 398 |
+
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras],
|
| 399 |
outputs=[result, share_group],
|
| 400 |
)
|
| 401 |
button.click(
|
|
|
|
| 411 |
show_progress=False,
|
| 412 |
).success(
|
| 413 |
fn=run_lora,
|
| 414 |
+
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras],
|
| 415 |
outputs=[result, share_group],
|
| 416 |
)
|
| 417 |
share_button.click(None, [], [], js=share_js)
|