File size: 7,043 Bytes
aaf47df 20e59fb 91bf496 20e59fb e66bce9 aaf47df 91bf496 aaf47df 20e59fb 3a0a966 aaf47df 20e59fb aaf47df 20e59fb 3a0a966 aaf47df b4ee178 20e59fb b4ee178 aaf47df 91bf496 aaf47df 91bf496 aaf47df 5002527 02bfdfc aaf47df 91bf496 aaf47df 91bf496 aaf47df 91bf496 aaf47df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import requests
from cachetools import cached, TTLCache
from bs4 import BeautifulSoup
from httpx import Client
import json
from pathlib import Path
from huggingface_hub import CommitScheduler
from dotenv import load_dotenv
import os
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_TIME = 60 * 60 * 6 # 6 hours
client = Client()
REPO_ID = "librarian-bots/paper-recommendations-v2"
scheduler = CommitScheduler(
repo_id=REPO_ID,
repo_type="dataset",
folder_path="comments",
path_in_repo="data",
every=5,
token=HF_TOKEN,
)
def parse_arxiv_id_from_paper_url(url):
return url.split("/")[-1]
@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME))
def get_recommendations_from_semantic_scholar(semantic_scholar_id: str):
try:
r = requests.post(
"https://api.semanticscholar.org/recommendations/v1/papers/",
json={
"positivePaperIds": [semantic_scholar_id],
},
params={"fields": "externalIds,title,year", "limit": 10},
)
return r.json()["recommendedPapers"]
except KeyError as e:
raise gr.Error(
"Error getting recommendations, if this is a new paper it may not yet have"
" been indexed by Semantic Scholar."
) from e
def filter_recommendations(recommendations, max_paper_count=5):
# include only arxiv papers
arxiv_paper = [
r for r in recommendations if r["externalIds"].get("ArXiv", None) is not None
]
if len(arxiv_paper) > max_paper_count:
arxiv_paper = arxiv_paper[:max_paper_count]
return arxiv_paper
@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME))
def get_paper_title_from_arxiv_id(arxiv_id):
try:
return requests.get(f"https://huggingface.co/api/papers/{arxiv_id}").json()[
"title"
]
except Exception as e:
print(f"Error getting paper title for {arxiv_id}: {e}")
raise gr.Error("Error getting paper title for {arxiv_id}: {e}") from e
def format_recommendation_into_markdown(arxiv_id, recommendations):
# title = get_paper_title_from_arxiv_id(arxiv_id)
# url = f"https://huggingface.co/papers/{arxiv_id}"
# comment = f"Recommended papers for [{title}]({url})\n\n"
comment = "The following papers were recommended by the Semantic Scholar API \n\n"
for r in recommendations:
hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
return comment
def format_comment(result: str):
result = (
"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\n"
+ result
)
result += "\n\n Please give a thumbs up to this comment if you found it helpful!"
result += "\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space"
return result
def post_comment(
paper_url: str, comment: str, token: str | None = None, base_url: str | None = None
) -> bool:
if not base_url:
base_url = "https://huggingface.co"
paper_id = paper_url.split("/")[-1]
url = f"{base_url}/api/papers/{paper_id}/comment"
comment_data = {"comment": comment}
headers = {"Authorization": f"Bearer {token}", "Content-Type": "application/json"}
response = requests.post(url, json=comment_data, headers=headers)
if response.status_code == 201:
print(f"Comment posted successfully for {paper_url}!")
return True
else:
print(f"Failed to post comment! (Status Code: {response.status_code})")
print(response.text)
return False
def is_comment_from_librarian_bot(html: str) -> bool:
"""
Checks if the given HTML contains a comment from the librarian-bot.
Args:
html (str): The HTML content to check.
Returns:
bool: True if a comment from the librarian-bot is found, False otherwise.
"""
soup = BeautifulSoup(html, "lxml")
librarian_bot_links = soup.find_all("a", string="librarian-bot")
return any(librarian_bot_links)
def check_if_lib_bot_comment_exists(paper_url: str) -> bool:
"""
Checks if a comment from the librarian bot exists for a given paper URL.
Args:
paper_url (str): The URL of the paper.
Returns:
bool: True if a comment from the librarian bot exists, False otherwise.
"""
try:
resp = client.get(paper_url)
return is_comment_from_librarian_bot(resp.text)
except Exception as e:
print(f"Error checking if comment exists for {paper_url}: {e}")
return True # default to not posting comment
def log_comments(paper_url: str, comment: str):
"""
Logs comments for a given paper URL.
Args:
paper_url (str): The URL of the paper.
comment (str): The comment to be logged.
Returns:
None
"""
paper_id = paper_url.split("/")[-1]
file_path = Path(f"comments/{paper_id}.json")
if not file_path.exists():
with scheduler.lock:
with open(file_path, "w") as f:
data = {"paper_url": paper_url, "comment": comment}
json.dump(data, f)
def return_recommendations(url: str, post_to_paper: bool = True) -> str:
arxiv_id = parse_arxiv_id_from_paper_url(url)
recommendations = get_recommendations_from_semantic_scholar(f"ArXiv:{arxiv_id}")
filtered_recommendations = filter_recommendations(recommendations)
if post_to_paper:
if comment_already_exists := check_if_lib_bot_comment_exists(url):
gr.Info(
f"Existing comment: {comment_already_exists}...skipping posting comment"
)
else:
comment = format_comment(
format_recommendation_into_markdown(arxiv_id, filtered_recommendations)
)
if comment_status := post_comment(url, comment, token=HF_TOKEN):
log_comments(url, comment)
gr.Info(f"Comment status: {comment_status}")
else:
gr.Info("Failed to post comment")
return format_recommendation_into_markdown(arxiv_id, filtered_recommendations)
title = "Semantic Scholar Paper Recommender"
description = (
"Paste a link to a paper on Hugging Face Papers and get recommendations for similar"
" papers from Semantic Scholar. **Note**: Some papers may not have recommendations"
" yet if they are new or have not been indexed by Semantic Scholar."
)
examples = [
["https://huggingface.co/papers/2309.12307", False],
["https://huggingface.co/papers/2211.10086", False],
]
interface = gr.Interface(
return_recommendations,
[gr.Textbox(lines=1), gr.Checkbox(label="Post to Paper", default=False)],
gr.Markdown(),
examples=examples,
title=title,
description=description,
)
interface.queue()
interface.launch()
|