import asyncio
import os
import time
from datetime import datetime, timedelta, timezone
from typing import Any, Dict
import gradio as gr
import pandas as pd
import polars as pl
from cachetools import TTLCache, cached
from datasets import Dataset
from dotenv import load_dotenv
from httpx import AsyncClient, Client
from huggingface_hub import DatasetCard, hf_hub_url, list_datasets
from tqdm.auto import tqdm
load_dotenv()
LIMIT = 15_000
CACHE_TIME = 60 * 60 * 1 # 1 hour
REMOVE_ORGS = {
"HuggingFaceM4",
"HuggingFaceBR4",
"open-llm-leaderboard",
"TrainingDataPro",
}
HF_TOKEN = os.getenv("HF_TOKEN")
USER_AGENT = os.getenv("USER_AGENT")
if not HF_TOKEN or not USER_AGENT:
raise ValueError(
"Missing required environment variables. Please ensure both HF_TOKEN and USER_AGENT are set."
)
headers = {"authorization": f"Bearer {HF_TOKEN}", "user-agent": USER_AGENT}
client = Client(
headers=headers,
timeout=30,
)
async_client = AsyncClient(
headers=headers,
timeout=30,
http2=True,
)
cache = TTLCache(maxsize=10, ttl=CACHE_TIME)
@cached(cache)
def get_initial_data():
datasets = list_datasets(
limit=LIMIT,
sort="createdAt",
direction=-1,
expand=[
"trendingScore",
"createdAt",
"author",
"downloads",
"likes",
"cardData",
"lastModified",
"private",
],
)
return [d.__dict__ for d in tqdm(datasets)]
keep_initial = [
"id",
"author",
"created_at",
"last_modified",
"private",
"downloads",
"likes",
"trending_score",
"card_data",
"cardData",
]
keep_final = [
"id",
"author",
"created_at",
"last_modified",
"downloads",
"likes",
"trending_score",
]
def prepare_initial_df():
ds = get_initial_data()
df = pl.LazyFrame(ds).select(keep_initial)
# remove private datasets
df = df.filter(~pl.col("private"))
df = df.filter(~pl.col("author").is_in(REMOVE_ORGS))
df = df.filter(~pl.col("id").str.contains("my-distiset"))
df = df.select(keep_final)
return df.collect()
async def get_readme_len(row: Dict[str, Any]):
SEMPAHORE = asyncio.Semaphore(30)
try:
url = hf_hub_url(row["id"], "README.md", repo_type="dataset")
async with SEMPAHORE:
resp = await async_client.get(url)
if resp.status_code == 200:
card = DatasetCard(resp.text)
row["len"] = len(card.text)
else:
row["len"] = 0 # Use 0 instead of None to avoid type issues
return row
except Exception as e:
print(e)
row["len"] = 0 # Use 0 instead of None to avoid type issues
return row
def prepare_data_with_readme_len(df: pl.DataFrame):
ds = Dataset.from_polars(df)
ds = ds.map(get_readme_len)
return ds
async def check_ds_server_valid(row):
SEMPAHORE = asyncio.Semaphore(10)
try:
url = f"https://datasets-server.huggingface.co/is-valid?dataset={row['id']}"
async with SEMPAHORE:
response = await async_client.get(url)
if response.status_code != 200:
row["has_server_preview"] = False
data = response.json()
preview = data.get("preview")
row["has_server_preview"] = preview is not None
return row
except Exception as e:
print(e)
row["has_server_preview"] = False
return row
def prep_data_with_server_preview(ds):
ds = ds.map(check_ds_server_valid)
return ds.to_polars()
def render_model_hub_link(hub_id):
link = f"https://huggingface.co/datasets/{hub_id}"
return (
f'{hub_id}'
)
def prep_final_data():
# Check if we have a valid cached parquet file
cache_dir = "cache"
os.makedirs(cache_dir, exist_ok=True)
# Get current time and calculate cache validity
now = time.time()
cache_valid_time = (
now - CACHE_TIME
) # Cache is valid if created within the last CACHE_TIME seconds
# Look for valid cache files
valid_cache_file = None
for filename in os.listdir(cache_dir):
if filename.startswith("dataset_cache_") and filename.endswith(".parquet"):
try:
# Extract timestamp from filename
timestamp = float(
filename.replace("dataset_cache_", "").replace(".parquet", "")
)
if timestamp > cache_valid_time:
valid_cache_file = os.path.join(cache_dir, filename)
break
except ValueError:
continue
# If we have a valid cache file, load it
if valid_cache_file:
print(f"Loading data from cache: {valid_cache_file}")
return pl.read_parquet(valid_cache_file)
# Otherwise, generate the data and cache it
print("Generating fresh data...")
df = prepare_initial_df()
ds = prepare_data_with_readme_len(df)
df = prep_data_with_server_preview(ds)
# Format the ID column as HTML links using string concatenation instead of regex
df = df.with_columns(
(
pl.lit(''
)
+ pl.col("id")
+ pl.lit("")
).alias("hub_id")
)
df = df.drop("id")
df = df.sort(by=["trending_score", "likes", "downloads", "len"], descending=True)
# make hub_id column first column
print(df.columns)
df = df.select(
[
"hub_id",
"author",
"created_at",
"last_modified",
"downloads",
"likes",
"trending_score",
"len",
"has_server_preview",
]
)
# Save to cache
cache_file = os.path.join(cache_dir, f"dataset_cache_{now}.parquet")
df.write_parquet(cache_file)
# Clean up old cache files
for filename in os.listdir(cache_dir):
if filename.startswith("dataset_cache_") and filename.endswith(".parquet"):
try:
timestamp = float(
filename.replace("dataset_cache_", "").replace(".parquet", "")
)
if timestamp <= cache_valid_time:
os.remove(os.path.join(cache_dir, filename))
except ValueError:
continue
return df
def filter_by_max_age(df, max_age_days):
df = df.filter(
pl.col("created_at")
> (datetime.now(timezone.utc) - timedelta(days=max_age_days))
)
return df
def filter_by_min_len(df, min_len):
df = df.filter(pl.col("len") >= min_len)
return df
def filter_by_server_preview(df, needs_server_preview):
df = df.filter(pl.col("has_server_preview") == needs_server_preview)
return df
def filter_df(max_age_days, min_len, needs_server_preview):
df = prep_final_data()
df = df.lazy()
df = filter_by_max_age(df, max_age_days)
df = filter_by_min_len(df, min_len)
df = filter_by_server_preview(df, needs_server_preview)
df = df.sort(by=["trending_score", "likes", "downloads", "len"], descending=True)
return df.collect()
with gr.Blocks() as demo:
gr.Markdown("# Recent Datasets on the Hub")
gr.Markdown(
"Datasets added in the past 90 days with a README.md and some metadata."
)
with gr.Row():
max_age_days = gr.Slider(
label="Max Age (days)",
value=7,
minimum=0,
maximum=90,
step=1,
interactive=True,
)
min_len = gr.Slider(
label="Minimum README Length",
value=300,
minimum=0,
maximum=1000,
step=50,
interactive=True,
)
needs_server_preview = gr.Checkbox(
label="Exclude datasets without datasets-server preview?",
value=False,
interactive=True,
)
output = gr.DataFrame(
value=filter_df(7, 300, False),
interactive=False,
datatype="markdown",
)
def update_df(age, length, preview):
return filter_df(age, length, preview)
# Connect the input components to the update function
for component in [max_age_days, min_len, needs_server_preview]:
component.change(
fn=update_df,
inputs=[max_age_days, min_len, needs_server_preview],
outputs=[output],
)
demo.launch()