import asyncio import os import time from datetime import datetime, timedelta, timezone from typing import Any, Dict import gradio as gr import pandas as pd import polars as pl from cachetools import TTLCache, cached from datasets import Dataset from dotenv import load_dotenv from httpx import AsyncClient, Client from huggingface_hub import DatasetCard, hf_hub_url, list_datasets from tqdm.auto import tqdm load_dotenv() LIMIT = 15_000 CACHE_TIME = 60 * 60 * 1 # 1 hour REMOVE_ORGS = { "HuggingFaceM4", "HuggingFaceBR4", "open-llm-leaderboard", "TrainingDataPro", } HF_TOKEN = os.getenv("HF_TOKEN") USER_AGENT = os.getenv("USER_AGENT") if not HF_TOKEN or not USER_AGENT: raise ValueError( "Missing required environment variables. Please ensure both HF_TOKEN and USER_AGENT are set." ) headers = {"authorization": f"Bearer {HF_TOKEN}", "user-agent": USER_AGENT} client = Client( headers=headers, timeout=30, ) async_client = AsyncClient( headers=headers, timeout=30, http2=True, ) cache = TTLCache(maxsize=10, ttl=CACHE_TIME) @cached(cache) def get_initial_data(): datasets = list_datasets( limit=LIMIT, sort="createdAt", direction=-1, expand=[ "trendingScore", "createdAt", "author", "downloads", "likes", "cardData", "lastModified", "private", ], ) return [d.__dict__ for d in tqdm(datasets)] keep_initial = [ "id", "author", "created_at", "last_modified", "private", "downloads", "likes", "trending_score", "card_data", "cardData", ] keep_final = [ "id", "author", "created_at", "last_modified", "downloads", "likes", "trending_score", ] def prepare_initial_df(): ds = get_initial_data() df = pl.LazyFrame(ds).select(keep_initial) # remove private datasets df = df.filter(~pl.col("private")) df = df.filter(~pl.col("author").is_in(REMOVE_ORGS)) df = df.filter(~pl.col("id").str.contains("my-distiset")) df = df.select(keep_final) return df.collect() async def get_readme_len(row: Dict[str, Any]): SEMPAHORE = asyncio.Semaphore(30) try: url = hf_hub_url(row["id"], "README.md", repo_type="dataset") async with SEMPAHORE: resp = await async_client.get(url) if resp.status_code == 200: card = DatasetCard(resp.text) row["len"] = len(card.text) else: row["len"] = 0 # Use 0 instead of None to avoid type issues return row except Exception as e: print(e) row["len"] = 0 # Use 0 instead of None to avoid type issues return row def prepare_data_with_readme_len(df: pl.DataFrame): ds = Dataset.from_polars(df) ds = ds.map(get_readme_len) return ds async def check_ds_server_valid(row): SEMPAHORE = asyncio.Semaphore(10) try: url = f"https://datasets-server.huggingface.co/is-valid?dataset={row['id']}" async with SEMPAHORE: response = await async_client.get(url) if response.status_code != 200: row["has_server_preview"] = False data = response.json() preview = data.get("preview") row["has_server_preview"] = preview is not None return row except Exception as e: print(e) row["has_server_preview"] = False return row def prep_data_with_server_preview(ds): ds = ds.map(check_ds_server_valid) return ds.to_polars() def render_model_hub_link(hub_id): link = f"https://huggingface.co/datasets/{hub_id}" return ( f'{hub_id}' ) def prep_final_data(): # Check if we have a valid cached parquet file cache_dir = "cache" os.makedirs(cache_dir, exist_ok=True) # Get current time and calculate cache validity now = time.time() cache_valid_time = ( now - CACHE_TIME ) # Cache is valid if created within the last CACHE_TIME seconds # Look for valid cache files valid_cache_file = None for filename in os.listdir(cache_dir): if filename.startswith("dataset_cache_") and filename.endswith(".parquet"): try: # Extract timestamp from filename timestamp = float( filename.replace("dataset_cache_", "").replace(".parquet", "") ) if timestamp > cache_valid_time: valid_cache_file = os.path.join(cache_dir, filename) break except ValueError: continue # If we have a valid cache file, load it if valid_cache_file: print(f"Loading data from cache: {valid_cache_file}") return pl.read_parquet(valid_cache_file) # Otherwise, generate the data and cache it print("Generating fresh data...") df = prepare_initial_df() ds = prepare_data_with_readme_len(df) df = prep_data_with_server_preview(ds) # Format the ID column as HTML links using string concatenation instead of regex df = df.with_columns( ( pl.lit('' ) + pl.col("id") + pl.lit("") ).alias("hub_id") ) df = df.drop("id") df = df.sort(by=["trending_score", "likes", "downloads", "len"], descending=True) # make hub_id column first column print(df.columns) df = df.select( [ "hub_id", "author", "created_at", "last_modified", "downloads", "likes", "trending_score", "len", "has_server_preview", ] ) # Save to cache cache_file = os.path.join(cache_dir, f"dataset_cache_{now}.parquet") df.write_parquet(cache_file) # Clean up old cache files for filename in os.listdir(cache_dir): if filename.startswith("dataset_cache_") and filename.endswith(".parquet"): try: timestamp = float( filename.replace("dataset_cache_", "").replace(".parquet", "") ) if timestamp <= cache_valid_time: os.remove(os.path.join(cache_dir, filename)) except ValueError: continue return df def filter_by_max_age(df, max_age_days): df = df.filter( pl.col("created_at") > (datetime.now(timezone.utc) - timedelta(days=max_age_days)) ) return df def filter_by_min_len(df, min_len): df = df.filter(pl.col("len") >= min_len) return df def filter_by_server_preview(df, needs_server_preview): df = df.filter(pl.col("has_server_preview") == needs_server_preview) return df def filter_df(max_age_days, min_len, needs_server_preview): df = prep_final_data() df = df.lazy() df = filter_by_max_age(df, max_age_days) df = filter_by_min_len(df, min_len) df = filter_by_server_preview(df, needs_server_preview) df = df.sort(by=["trending_score", "likes", "downloads", "len"], descending=True) return df.collect() with gr.Blocks() as demo: gr.Markdown("# Recent Datasets on the Hub") gr.Markdown( "Datasets added in the past 90 days with a README.md and some metadata." ) with gr.Row(): max_age_days = gr.Slider( label="Max Age (days)", value=7, minimum=0, maximum=90, step=1, interactive=True, ) min_len = gr.Slider( label="Minimum README Length", value=300, minimum=0, maximum=1000, step=50, interactive=True, ) needs_server_preview = gr.Checkbox( label="Exclude datasets without datasets-server preview?", value=False, interactive=True, ) output = gr.DataFrame( value=filter_df(7, 300, False), interactive=False, datatype="markdown", ) def update_df(age, length, preview): return filter_df(age, length, preview) # Connect the input components to the update function for component in [max_age_days, min_len, needs_server_preview]: component.change( fn=update_df, inputs=[max_age_days, min_len, needs_server_preview], outputs=[output], ) demo.launch()