File size: 10,146 Bytes
00dd2d0
 
 
 
9d24b08
00dd2d0
 
 
 
 
 
9d24b08
 
00dd2d0
 
 
 
 
 
 
 
 
98a2ece
00dd2d0
98a2ece
00dd2d0
 
 
 
 
49cc045
00dd2d0
c97fddf
00dd2d0
 
49cc045
00dd2d0
 
 
 
 
 
7e316ae
00dd2d0
 
 
49cc045
00dd2d0
 
 
9d24b08
00dd2d0
 
6cc3a56
00dd2d0
 
 
 
2e284e5
 
72404f0
49cc045
00dd2d0
 
 
 
 
 
 
 
 
 
 
 
49cc045
00dd2d0
 
 
98a2ece
00dd2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d04ba5
00dd2d0
 
 
9d04ba5
00dd2d0
 
 
 
 
 
 
 
9d04ba5
 
 
7249cb2
9d04ba5
 
 
00dd2d0
 
 
9d24b08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d04ba5
8614aa9
9d04ba5
 
 
 
 
 
8614aa9
 
9d04ba5
 
 
8614aa9
823b045
 
 
 
 
9d04ba5
 
 
 
9d24b08
 
9d04ba5
9d24b08
823b045
 
2e284e5
 
9d24b08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a09f64
95f663e
f75f6f9
9a09f64
00dd2d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import contextlib
import re
import tempfile
from functools import lru_cache
from typing import Optional

import gradio as gr
from git import Repo
from httpx import Client
from huggingface_hub import create_repo, upload_folder
from toolz import groupby
import kagglehub
from kagglehub import KaggleDatasetAdapter

client = Client()


def clone_into_temp_dir(github_repo_url):
    temp_dir = tempfile.TemporaryDirectory()
    return Repo.clone_from(github_repo_url, temp_dir), temp_dir


# repo = clone_into_temp_dir("https://github.com/chen-zichen/XplainLLM_dataset/")

# clone_into_temp_dir("https://github.com/chen-zichen/XplainLLM_dataset/")


def upload_directory_to_hf(
    repo_id: str,
    directory: str,
    oauth_token: str,
):
    private = False
    url = create_repo(
        repo_id,
        token=oauth_token,
        exist_ok=True,
        repo_type="dataset",
        private=private,
    )

    commit_url = upload_folder(
        repo_id=repo_id,
        folder_path=directory,
        path_in_repo="data",
        repo_type="dataset",
        token=oauth_token,
        commit_message="Migrated from GitHub",
        ignore_patterns=[
            "*.git*",
            # "*README.md*",
            "*.DS_Store",
            "*.env",
        ],  # ignore git files and .env files
    )


def push_to_hf(
    source_github_repository,
    destination_hf_hub_repository,
    subdirectory,
    oauth_token: gr.OAuthToken,
):
    gr.Info("Cloning source GitHub repository...")
    repo, temporary_directory = clone_into_temp_dir(source_github_repository)
    gr.Info("Cloning source GitHub repository...Done")
    gr.Info("Syncing with Hugging Face Hub...")
    if subdirectory:
        src_directory = f"{repo.working_dir}/{subdirectory[0]}"
    else:
        src_directory = repo.working_dir
    upload_directory_to_hf(
        repo_id=destination_hf_hub_repository,
        directory=src_directory,
        oauth_token=oauth_token.token,
    )
    gr.Info("Syncing with Hugging Face Hub...Done")
    temporary_directory.cleanup()
    return f"Pushed the dataset to [{destination_hf_hub_repository}](https://huggingface.co/datasets/{destination_hf_hub_repository})"


def extract_user_name_and_repo_from_url(github_url: str):
    pattern = r"https://github.com/([^/]+)/([^/]+)"
    if match := re.search(pattern, github_url):
        return match[1], match[2]
    print("No match found in the GitHub URL.")
    return None


def get_files_and_directories(response):
    data = response.json()
    grouped_by_type = groupby(lambda item: item["type"], data["tree"])
    files = grouped_by_type.get("blob", [])
    directories = grouped_by_type.get("tree", [])
    if files:
        files = [file["path"] for file in files]
    if directories:
        directories = [directory["path"] for directory in directories]
    return {"files": files, "directories": directories}


@lru_cache(maxsize=128)
def list_git_repo_files_and_directories(repo_url: str, branch: str = "main"):
    user_name_and_repo = extract_user_name_and_repo_from_url(repo_url)
    if user_name_and_repo is None:
        return None
    user_name, repo_name = user_name_and_repo
    url = f"https://api.github.com/repos/{user_name}/{repo_name}/git/trees/{branch}"
    response = client.get(url)
    if response.status_code == 200:
        return get_files_and_directories(response)


def show_files_and_directories(url: str):
    with contextlib.suppress(Exception):
        files_and_directories = list_git_repo_files_and_directories(url)
        directories = files_and_directories.get("directories", [])
        files = files_and_directories.get("files", [])
        print(directories)
        return gr.Dropdown(
            label="Directories",
            choices=directories,
            max_choices=1,
            visible=True,
            interactive=True,
            multiselect=True,
        ), gr.Dropdown(
            label="Files",
            choices=files,
            max_choices=None,
            visible=True,
            interactive=True,
            multiselect=True,
        )


def push_kaggle_to_hf(
    source_kaggle_dataset: str,
    destination_hf_hub_repository: str,
    file_path: str,
    oauth_token: gr.OAuthToken,
):
    """Pushes a Kaggle dataset to HuggingFace Hub using the HF dataset adapter"""
    if not file_path:
        raise ValueError("File path must be specified for Kaggle datasets")

    gr.Info("Loading Kaggle dataset...")
    dataset = kagglehub.load_dataset(
        KaggleDatasetAdapter.HUGGING_FACE,
        source_kaggle_dataset,
        file_path,
    )
    gr.Info("Loading Kaggle dataset...Done")

    gr.Info("Pushing to Hugging Face Hub...")
    dataset.push_to_hub(
        destination_hf_hub_repository,
        token=oauth_token.token,
    )
    gr.Info("Pushing to Hugging Face Hub...Done")

    return f"Pushed the dataset to [{destination_hf_hub_repository}](https://huggingface.co/datasets/{destination_hf_hub_repository})"


html_text_app_description = """
While GitHub and Kaggle are great platforms, the Hugging Face Datasets Hub is a better place to host and share datasets. 
Some of the benefits of hosting datasets on the Hugging Face Datasets Hub are:
<br>
<ul>
<li>Hosting for large datasets</li>
<li>An interactive preview of your dataset</li>
<li>Access to the dataset via many tools and libraries including; datasets, pandas, polars, dask and DuckDB</li>
<li>Seamless integration with machine learning workflows</li>
<li>Version control and dataset versioning</li>
</ul>

<br>
This app will help you migrate datasets currently hosted on GitHub or Kaggle to the Hugging Face Datasets Hub.

Make sure you consider the license of the dataset when migrating it to the Hugging Face Datasets Hub &#129303;. 
<br>
<br>
<i>Note: the Kaggle implementation is experimental and may not work for all datasets. Feel free to open a PR to improve it!</i>
"""

with gr.Blocks(theme=gr.themes.Base()) as demo:
    gr.HTML(
        """<h1 style='text-align: center;'> Dataset Migration Tool</h1>
        <center><i> &#x2728; Migrate datasets to Hugging Face Hub in a few steps &#x2728;</i></center>"""
    )

    gr.HTML(html_text_app_description)

    with gr.Row():
        gr.LoginButton(size="sm")

    with gr.Tabs() as tabs:
        with gr.Tab("GitHub"):
            gr.Markdown("### Location of existing dataset")
            gr.Markdown(
                "URL for the GitHub repository where the dataset is currently hosted"
            )
            source_github_repository = gr.Textbox(
                lines=1, label="Source GitHub Repository URL"
            )

            with gr.Accordion("Advanced Options", open=False):
                gr.Markdown("### Select files and folder to migrate")
                gr.Markdown(
                    "(Optional): select a specific folder and/or files to migrate from the GitHub repository. If you select a folder all the files in that folder will be migrated."
                )
                folder_in_github_repo = gr.Dropdown(
                    None,
                    label="Folder in the GitHub Repository to migrate",
                    allow_custom_value=True,
                    visible=True,
                )
                files_in_github_repo = gr.Dropdown(
                    None,
                    label="Files in GitHub Repository to migrate",
                    allow_custom_value=True,
                    visible=True,
                )
                source_github_repository.change(
                    show_files_and_directories,
                    [source_github_repository],
                    [folder_in_github_repo, files_in_github_repo],
                )

            gr.Markdown("### Destination for your migrated dataset")
            destination_hf_hub_repository = gr.Textbox(
                label="Destination Hugging Face Repository",
                placeholder="i.e. <hugging face username>/<repository_name>",
            )

            github_submit_btn = gr.Button("Migrate GitHub Dataset")
            github_result = gr.Markdown(label="Summary", visible=True)

            github_submit_btn.click(
                push_to_hf,
                [
                    source_github_repository,
                    destination_hf_hub_repository,
                    folder_in_github_repo,
                ],
                [github_result],
            )

        with gr.Tab("Kaggle"):
            gr.Markdown("### Source Kaggle Dataset")
            gr.Markdown("Enter the Kaggle dataset name and file path")
            source_kaggle_dataset = gr.Textbox(
                lines=1,
                label="Source Kaggle Dataset",
                placeholder="username/dataset-name",
            )
            kaggle_file_path = gr.Textbox(
                label="File path in dataset",
                placeholder="e.g., train.csv",
                info="Specify the file to migrate from the dataset",
            )

            gr.Markdown("### Destination for your migrated dataset")
            kaggle_destination_hf_hub = gr.Textbox(
                label="Destination Hugging Face Repository",
                placeholder="i.e. <hugging face username>/<repository_name>",
            )

            kaggle_submit_btn = gr.Button("Migrate Kaggle Dataset")
            kaggle_result = gr.Markdown(label="Summary", visible=True)

            kaggle_submit_btn.click(
                push_kaggle_to_hf,
                [
                    source_kaggle_dataset,
                    kaggle_destination_hf_hub,
                    kaggle_file_path,
                ],
                [kaggle_result],
            )

    gr.Markdown(
        """You should add a dataset card for your dataset to help people discover and understand your dataset. You can find instructions for creating a dataset card [here](https://huggingface.co/docs/datasets/dataset_card). 
        If you have any questions or feedback feel free to reach out to us on using the [Discussion tab](https://huggingface.co/spaces/librarian-bots/github-to-huggingface-dataset-migration-tool/discussions/1)"""
    )

demo.launch()