Spaces:
Runtime error
Runtime error
File size: 7,753 Bytes
7c7d36b 9183e0b 16a7f15 9183e0b 7c7d36b 16a7f15 7c7d36b 9183e0b 7c7d36b 878ce2b 5a09dc6 878ce2b 7c7d36b 878ce2b 7c7d36b 878ce2b 5a09dc6 7c7d36b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import pandas as pd
from Bio import Entrez
import requests
import os
HF_API = os.getenv('HF_API')
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
if False:
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto",trust_remote_code=True).eval()
def generate_summary(prompt):
# Add instructions to the prompt to signal that you want a summary
instructions = "Summarize the following text:"
prompt_with_instructions = f"{instructions}\n{prompt}"
# Tokenize the prompt text and return PyTorch tensors
inputs = tokenizer.encode(prompt_with_instructions, return_tensors="pt")
# Generate a response using the model
outputs = model.generate(inputs, max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
# Decode the response
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
def generate_response(prompt):
# Tokenize the prompt text and return PyTorch tensors
inputs = tokenizer.encode(prompt, return_tensors="pt")
# Generate a response using the model
outputs = model.generate(inputs, max_length=512, num_return_sequences=1)
# Decode the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Function to search PubMed for articles
def search_pubmed(query, retmax):
Entrez.email = '[email protected]'
handle = Entrez.esearch(db="pubmed", term=query, retmax=retmax)
record = Entrez.read(handle)
handle.close()
idlist = record['IdList']
handle = Entrez.efetch(db="pubmed", id=idlist, retmode="xml")
articles = Entrez.read(handle)['PubmedArticle']
handle.close()
article_list = []
for article in articles:
article_dict = {
'PMID': str(article['MedlineCitation']['PMID']),
'Authors': ' '.join([author['LastName'] + ' ' + author.get('Initials', '')
for author in article['MedlineCitation']['Article']['AuthorList']]),
'Title': article['MedlineCitation']['Article']['ArticleTitle'],
'Abstract': article['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', [None])[0]
}
article_list.append(article_dict)
return pd.DataFrame(article_list)
# Function to summarize articles using Hugging Face's API
def summarize_with_huggingface(model, selected_articles, USE_LOCAL=False):
API_URL = f"https://api-inference.huggingface.co/models/{model}"
# Your Hugging Face API key
API_KEY = HF_API
headers = {"Authorization": f"Bearer {API_KEY}"}
# Prepare the text to summarize: concatenate all abstracts
print(type(selected_articles))
print(selected_articles.to_dict(orient='records'))
text_to_summarize = " ".join(
[f"PMID: {article['PMID']}. Authors: {article['Authors']}. Title: {article['Title']}. Abstract: {article['Abstract']}."
for article in selected_articles.to_dict(orient='records')]
)
# Define the payload
payload = {
"inputs": text_to_summarize,
"parameters": {"max_length": 300} # Adjust as needed
}
if USE_LOCAL:
response = generate_response(text_to_summarize)
else:
# Make the POST request to the Hugging Face API
response = requests.post(API_URL, headers=headers, json=payload)
response.raise_for_status() # Raise an HTTPError if the HTTP request returned an unsuccessful status code
# The API returns a list of dictionaries. We extract the summary from the first one.
return response.json()[0]['generated_text']
import gradio as gr
from Bio import Entrez
# Always tell NCBI who you are
Entrez.email = "[email protected]"
def process_query(keywords, top_k):
articles = search_pubmed(keywords, top_k)
# Convert each article from a dictionary to a list of values in the correct order
articles_for_display = [[article['pmid'], article['authors'], article['title'], article['abstract']] for article in articles]
return articles_for_display
def summarize_articles(indices, articles_for_display):
# Convert indices to a list of integers
selected_indices = [int(index.strip()) for index in indices.split(',') if index.strip().isdigit()]
# Convert the DataFrame to a list of dictionaries
articles_list = articles_for_display.to_dict(orient='records')
# Select articles based on the provided indices
selected_articles = [articles_list[index] for index in selected_indices]
# Generate the summary
summary = summarize_with_huggingface(selected_articles)
return summary
PASSWORD = "pass"
def check_password(password):
if password == PASSWORD:
return True, "Welcome!"
else:
return False, "Incorrect username or password."
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("### PubMed Article Summarizer")
with gr.Row():
password_input = gr.Textbox(label="Password", type="password")
login_button = gr.Button("Login")
login_result = gr.Textbox(label="Login Result", interactive=False)
login_button.click(check_password, inputs=[username_input, password_input], outputs=[login_result])
with gr.Row():
model_input = gr.Textbox(label="Enter the model to use", value="h2oai/h2ogpt-4096-llama2-7b-chat")
query_input = gr.Textbox(label="Query Keywords")
retmax_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of articles")
search_button = gr.Button("Search")
output_table = gr.Dataframe(headers=["PMID", "Authors", "Title","Abstract" ])
summarize_button = gr.Button("Summarize")
summary_output = gr.Textbox()
model_input.visible = False
query_input.visible = False
summarize_button.visible = False
def process_login(is_success, message):
if is_success:
model_input.visible = True
query_button.visible = True
summarize_button.visible = True
login_result.update(value=message)
login_result.visible = True
login_button.click(check_password, inputs=[password_input], outputs=[process_login])
def update_output_table(query, retmax):
df = search_pubmed(query, retmax)
# output_table.update(value=df)
return df
search_button.click(update_output_table, inputs=[query_input, retmax_input], outputs=output_table)
summarize_button.click(fn=summarize_with_huggingface, inputs=[model_input, output_table], outputs=summary_output)
demo.launch(debug=True)
if False:
with gr.Blocks() as demo:
gr.Markdown("### PubMed Article Summarizer")
with gr.Row():
query_input = gr.Textbox(label="Query Keywords")
top_k_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Top K Results")
search_button = gr.Button("Search")
output_table = gr.Dataframe(headers=["Title", "Authors", "Abstract", "PMID"])
indices_input = gr.Textbox(label="Enter indices of articles to summarize (comma-separated)")
summarize_button = gr.Button("Summarize Selected Articles")
summary_output = gr.Textbox(label="Summary")
search_button.click(
fn=process_query,
inputs=[query_input, top_k_input],
outputs=output_table
)
summarize_button.click(
fn=summarize_articles,
inputs=[indices_input, output_table],
outputs=summary_output
)
demo.launch(debug=True)
|