hz2475 commited on
Commit
532ca2e
·
1 Parent(s): 72f684c
Files changed (1) hide show
  1. README.md +0 -438
README.md DELETED
@@ -1,438 +0,0 @@
1
- <div align="center">
2
- <h1>💫 StarVector: Generating Scalable Vector Graphics Code from Images and Text</h1>
3
- <img src="assets/starvector-xyz.png" alt="starvector" style="width: 800px; display: block; margin-left: auto; margin-right: auto;"/>
4
-
5
- <a href="https://arxiv.org/abs/2312.11556" target="_blank">
6
- <img alt="arXiv" src="https://img.shields.io/badge/arXiv-StarVector-red?logo=arxiv" height="25" />
7
- </a>
8
- <a href="https://starvector.github.io/" target="_blank">
9
- <img alt="Website" src="https://img.shields.io/badge/🌎_Website-starvector.github.io-blue.svg" height="25" />
10
- </a>
11
- <a href="https://huggingface.co/starvector/starvector-1b-im2svg" target="_blank">
12
- <img alt="HF Models: StarVector" src="https://img.shields.io/badge/%F0%9F%A4%97%20_Model-StarVector--1B-ffc107?color=ffc107&logoColor=white" height="25" />
13
- </a>
14
- <a href="https://huggingface.co/starvector/starvector-8b-im2svg" target="_blank">
15
- <img alt="HF Models: StarVector" src="https://img.shields.io/badge/%F0%9F%A4%97%20_Model-StarVector--8B-ffc107?color=ffc107&logoColor=white" height="25" />
16
- </a>
17
- <a href="https://huggingface.co/datasets/starvector/svg-stack" target="_blank">
18
- <img alt="HF Dataset: SVG-Stack" src="https://img.shields.io/badge/%F0%9F%A4%97%20_Data-SVG--Stack-ffc107?color=ffc107&logoColor=white" height="25" />
19
- </a>
20
- <a href="https://huggingface.co/collections/starvector/starvector-svg-datasets-svg-bench-67811204a76475be4dd66d09" target="_blank">
21
- <img alt="HF Dataset: SVG-Bench" src="https://img.shields.io/badge/%F0%9F%A4%97%20_Benchmark-SVG--Bench-ffc107?color=ffc107&logoColor=white" height="25" />
22
- </a>
23
-
24
- <div style="font-family: charter;">
25
- <a href="https://joanrod.github.io" target="_blank">Juan A. Rodriguez</a>,
26
- <a href="https://abhaypuri.github.io/portfolio/" target="_blank">Abhay Puri</a>,
27
- <a href="https://shubhamagarwal92.github.io/" target="_blank">Shubham Agarwal</a>,
28
- <a href="https://scholar.google.ca/citations?user=8vRS7F0AAAAJ&hl=en" target="_blank">Issam H. Laradji</a>,
29
- <a href="https://scholar.google.es/citations?user=IwBx73wAAAAJ&hl=ca" target="_blank">Pau Rodriguez</a>,
30
- <a href="https://scholar.google.es/citations?user=1jHvtfsAAAAJ&hl=ca" target="_blank">David Vazquez</a>,
31
- <a href="https://scholar.google.com/citations?user=1ScWJOoAAAAJ&hl=en" target="_blank">Chris Pal</a>,
32
- <a href="https://scholar.google.com/citations?user=aVfyPAoAAAAJ&hl=en" target="_blank">Marco Pedersoli</a>
33
- </div>
34
-
35
- </div>
36
-
37
- ## 🔥 News
38
- - March 2025: **StarVector Accepted at CVPR 2025**,
39
- - StarVector has been accepted at CVPR 2025! [[Link](https://arxiv.org/abs/2312.11556)]
40
- - Check out our website for more information [[Link](https://starvector.github.io/)]
41
- - StarVector models are now available on Hugging Face Model Hub! [[Link](https://huggingface.co/starvector/starvector-1b-im2svg)] [[Link](https://huggingface.co/starvector/starvector-8b-im2svg)]
42
- - SVGBench and SVG-Stack datasets are now available on Hugging Face Datasets Hub! [[Link](https://huggingface.co/datasets/starvector/svg-bench)] [[Link](https://huggingface.co/datasets/starvector/svg-stack)]
43
-
44
- ## 🚀 Introduction
45
- StarVector is a multimodal vision-language model for Scalable Vector Graphics (SVG) generation. It can be used to perform image2SVG and text2SVG generation. We pose image generation as a code generation task, using the power of multimodal VLMs
46
-
47
- <div align="center">
48
- <img src="assets/starvector-teaser.png" alt="starvector" style="width: 900px; display: block; margin-left: auto; margin-right: auto;" />
49
- </div>
50
-
51
- > **Abstract**: Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation methods have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond \textit{path} curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
52
-
53
- ### Multimodal Architecture
54
-
55
- StarVector uses a multimodal architecture to process images and text. When performing Image-to-SVG (or image vectorization), the image is projected into visual tokens, and SVG code is generated. When performing Text-to-SVG, the model only recieves the text instruction (no image is provided), and a novel SVG is created. The LLM is based of StarCoder, which we leverage to transfer coding skills to SVG generation.
56
-
57
- <div align="center">
58
- <img src="assets/starvector-arch.png" alt="starvector" style="width: 700px; display: block; margin-left: auto; margin-right: auto;" />
59
- </div>
60
-
61
- ## 📖 Table of Contents
62
- - [💿 Installation](#installation)
63
- - [🏎️ Quick Start - Image2SVG Generation](#quick-start---image2svg-generation)
64
- - [🎨 Models](#models)
65
- - [📊 Datasets](#datasets---svg-bench)
66
- - [🏋️‍♂️ Training](#training)
67
- - [🏆 Evaluation on SVG-Bench](#validation-on-svg-benchmarks-svg-bench)
68
- - [🧩 Demo](#starvector-demo)
69
- - [📚 Citation](#citation)
70
- - [📝 License](#license)
71
-
72
-
73
- ## Installation
74
-
75
- 1. Clone this repository and navigate to star-vector folder
76
- ```bash
77
- git clone https://github.com/joanrod/star-vector.git
78
- cd star-vector
79
- ```
80
-
81
- 2. Install Package
82
- ```Shell
83
- conda create -n starvector python=3.11.3 -y
84
- conda activate starvector
85
- pip install --upgrade pip # enable PEP 660 support
86
- pip install -e .
87
- ```
88
-
89
- 3. Install additional packages for training
90
- ```
91
- pip install -e ".[train]"
92
- ```
93
-
94
- ### Upgrade to latest code base
95
-
96
- ```Shell
97
- git pull
98
- pip install -e .
99
- ```
100
-
101
- ## Quick Start - Image2SVG Generation
102
-
103
- ```Python
104
- from PIL import Image
105
- from starvector.model.starvector_arch import StarVectorForCausalLM
106
- from starvector.data.util import process_and_rasterize_svg
107
-
108
- model_name = "starvector/starvector-8b-im2svg"
109
-
110
- starvector = StarVectorForCausalLM.from_pretrained(model_name)
111
-
112
- starvector.cuda()
113
- starvector.eval()
114
-
115
- image_pil = Image.open('assets/examples/sample-0.png')
116
- image = starvector.process_images([image_pil])[0].cuda()
117
- batch = {"image": image}
118
-
119
- raw_svg = starvector.generate_im2svg(batch, max_length=1000)[0]
120
- svg, raster_image = process_and_rasterize_svg(raw_svg)
121
- ```
122
-
123
- ### Use it from HuggingFace AutoModel
124
-
125
- ```Python
126
- from PIL import Image
127
- from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
128
- from starvector.data.util import process_and_rasterize_svg
129
- import torch
130
-
131
- model_name = "starvector/starvector-8b-im2svg"
132
-
133
- starvector = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True)
134
- processor = starvector.model.processor
135
- tokenizer = starvector.model.svg_transformer.tokenizer
136
-
137
- starvector.cuda()
138
- starvector.eval()
139
-
140
- image_pil = Image.open('assets/examples/sample-18.png')
141
-
142
- image = processor(image_pil, return_tensors="pt")['pixel_values'].cuda()
143
- if not image.shape[0] == 1:
144
- image = image.squeeze(0)
145
- batch = {"image": image}
146
-
147
- raw_svg = starvector.generate_im2svg(batch, max_length=4000)[0]
148
- svg, raster_image = process_and_rasterize_svg(raw_svg)
149
- ```
150
-
151
-
152
- ## Models
153
-
154
- We provide [Hugging Face 🤗 model checkpoints](https://huggingface.co/collections/starvector/starvector-models-6783b22c7bd4b43d13cb5289) for image2SVG vectorization, for 💫 StarVector-8B and 💫 StarVector-1B. These are the results on SVG-Bench, using the DinoScore metric.
155
-
156
- | Method | SVG-Stack | SVG-Fonts | SVG-Icons | SVG-Emoji | SVG-Diagrams |
157
- |---------------|-----------|-----------|-----------|-----------|--------------|
158
- | AutoTrace | 0.942 | 0.954 | 0.946 | 0.975 | 0.874 |
159
- | Potrace | 0.898 | 0.967 | 0.972 | 0.882 | 0.875 |
160
- | VTracer | 0.954 | 0.964 | 0.940 | 0.981 | 0.882 |
161
- | Im2Vec | 0.692 | 0.733 | 0.754 | 0.732 | - |
162
- | LIVE | 0.934 | 0.956 | 0.959 | 0.969 | 0.870 |
163
- | DiffVG | 0.810 | 0.821 | 0.952 | 0.814 | 0.822 |
164
- | GPT-4-V | 0.852 | 0.842 | 0.848 | 0.850 | - |
165
- | 💫 StarVector-1B (🤗 [Link](https://huggingface.co/starvector/starvector-1b-im2svg)) | 0.926 | 0.978 | 0.975 | 0.929 | 0.943 |
166
- | 💫 StarVector-8B (🤗 [Link](https://huggingface.co/starvector/starvector-8b-im2svg)) | **0.966** | **0.982** | **0.984** | **0.981** | **0.959** |
167
-
168
- *Note*: StarVector models will not work for natural images or illustrations, as they have not been trained on those images. They excel in vectorizing icons, logotypes, technical diagrams, graphs, and charts.
169
-
170
- ## Datasets - SVG-Bench
171
- SVG-Bench is a benchmark for evaluating SVG generation models. It contains 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG, and Diagram-to-SVG.
172
-
173
- See our [Huggingface 🤗 Dataset Collection](https://huggingface.co/collections/starvector/starvector-svg-datasets-67811204a76475be4dd66d09)
174
-
175
- | Dataset | Train | Val | Test | Token Length | SVG Primitives | Annotation |
176
- |-----------------|--------|-------|------|------------------|----------------|----------------|
177
- | SVG-Stack (🤗 [Link](https://huggingface.co/datasets/starvector/svg-stack)) | 2.1M | 108k | 5.7k | 1,822 ± 1,808 | All | [Captions](https://huggingface.co/datasets/starvector/text2svg-stack) |
178
- | SVG-Stack_sim (🤗 [Link](https://huggingface.co/datasets/starvector/svg-stack-simple)) | 601k | 30.1k | 1.5k | 2k ± 918 | Vector path | - |
179
- | SVG-Diagrams (🤗 [Link](https://huggingface.co/datasets/starvector/svg-diagrams)) | - | - | 472 | 3,486 ± 1,918 | All | - |
180
- | SVG-Fonts (🤗 [Link](https://huggingface.co/datasets/starvector/svg-fonts)) | 1.8M | 91.5k | 4.8k | 2,121 ± 1,868 | Vector path | Font letter |
181
- | SVG-Fonts_sim (🤗 [Link](https://huggingface.co/datasets/starvector/svg-fonts-simple)) | 1.4M | 71.7k | 3.7k | 1,722 ± 723 | Vector path | Font letter |
182
- | SVG-Emoji (🤗 [Link](https://huggingface.co/datasets/starvector/svg-emoji)) | 8.7k | 667 | 668 | 2,551 ± 1,805 | All | - |
183
- | SVG-Emoji_sim (🤗 [Link](https://huggingface.co/datasets/starvector/svg-emoji-simple)) | 580 | 57 | 96 | 2,448 ± 1,026 | Vector Path | - |
184
- | SVG-Icons (🤗 [Link](https://huggingface.co/datasets/starvector/svg-icons)) | 80.4k | 6.2k | 2.4k | 2,449 ± 1,543 | Vector path | - |
185
- | SVG-Icons_sim (🤗 [Link](https://huggingface.co/datasets/starvector/svg-icons-simple)) | 80,435 | 2,836 | 1,277| 2,005 ± 824 | Vector path | - |
186
- | SVG-FIGR (🤗 [Link](https://huggingface.co/datasets/starvector/FIGR-SVG)) | 270k | 27k | 3k | 5,342 ± 2,345 | Vector path | Class, Caption |
187
-
188
-
189
- >We offer a summary of statistics about the datasets used in our training and evaluation experiments. This datasets are included in SVG-Bench. The subscript _sim_ stands for the simplified version of the dataset, as required by some baselines.
190
-
191
- ## Training
192
-
193
- ### Confirm dependencies are installed
194
-
195
- ```bash
196
- pip install -e ".[train]"
197
- ```
198
-
199
- ### Set environment variables
200
- We recommend setting the following environment variables:
201
-
202
- ```bash
203
- export HF_HOME=<path to the folder where you want to store the models>
204
- export HF_TOKEN=<your huggingface token>
205
- export WANDB_API_KEY=<your wandb token>
206
- export OUTPUT_DIR=<path/to/output>
207
- ```
208
-
209
- cd the root of the repository.
210
-
211
- ```Shell
212
- cd star-vector
213
- ```
214
-
215
- ### Image2SVG Pretraining (Stage 1)
216
-
217
- We have different training approaches for StarVector-1B and StarVector-8B. StarVector-1B can be trained using Deepspeed, while StarVector-8B requires FSDP.
218
-
219
- #### StarVector-1B Training
220
-
221
- You can use the following command to train StarVector-1B on SVG-Stack for the Image2SVG vectorization task, using Deepspeed and Accelerate
222
-
223
- ```bash
224
- # StarVector-1B
225
- accelerate launch --config_file configs/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/im2svg-stack.yaml
226
- ```
227
-
228
- #### StarVector-8B Training
229
-
230
- You can use the following command to train StarVector-8B on SVG-Stack for the Image2SVG vectorization task, using FSDP and Accelerate. We provide the torchrun command to support multi-nodes and multi-GPUs.
231
-
232
- ```bash
233
- # StarVector-8B
234
- torchrun \
235
- --nproc-per-node=8 \
236
- --nnodes=1 \
237
- starvector/train/train.py \
238
- config=configs/models/starvector-8b/im2svg-stack.yaml
239
- ```
240
-
241
-
242
- ### Finetuning StarVector (Stage 2)
243
-
244
- After pretraining StarVector on image vectorization, we finetune it on additional SVG tasks like Text2SVG, and SVG-Bench datasets.
245
-
246
- #### Text2SVG Finetuning
247
-
248
- ```bash
249
- # StarVector-1B
250
- accelerate launch --config_file config/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/text2svg-stack.yaml
251
-
252
- # StarVector-8B
253
- torchrun \
254
- --nproc-per-node=8 \
255
- --nnodes=1 \
256
- starvector/train/train.py \
257
- config=configs/models/starvector-8b/text2svg-stack.yaml
258
- ```
259
-
260
- #### SVG-Bench Finetuning
261
-
262
- ```bash
263
- # StarVector-1B
264
- accelerate launch --config_file config/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/im2svg-{fonts,icons,emoji}.yaml
265
-
266
- # StarVector-8B
267
- torchrun \
268
- --nproc-per-node=8 \
269
- --nnodes=1 \
270
- starvector/train/train.py \
271
- config=configs/models/starvector-8b/im2svg-{fonts,icons,emoji}.yaml
272
- ```
273
-
274
- We also provide shell scripts in `scripts/train/*`
275
-
276
- ## Validation on SVG Benchmarks (⭐ SVG-Bench)
277
-
278
- We validate StarVector on ⭐ SVG-Bench Benchmark. We provide the SVGValidator class that allows you to run StarVector using **1) the HuggingFace generation backend** or **2) the VLLM backend**. The later is substantially faster thanks to the use of Paged Attention.
279
-
280
- ### HuggingFace Generation Backend
281
- Let's start with the evaluation for StarVector-1B and StarVector-8B on SVG-Stack, using the HuggingFace generation backend (StarVectorHFAPIValidator). To override the input arguments, you can add cli args following the yaml file structure.
282
-
283
- ```bash
284
- # StarVector-1B on SVG-Stack, using the HuggingFace backend
285
- python starvector/validation/validate.py \
286
- config=configs/generation/hf/starvector-1b/im2svg.yaml \
287
- dataset.name=starvector/svg-stack
288
-
289
- # StarVector-8B on SVG-Stack, using the vanilla HuggingFace generation API
290
- python starvector/validation/validate.py \
291
- config=configs/generation/hf/starvector-8b/im2svg.yaml \
292
- dataset.name=starvector/svg-stack
293
- ```
294
-
295
- ### vLLM Backend
296
-
297
- For using the vLLM backend (StarVectorVLLMAPIValidator), first install our StarVector fork of VLLM, [here](https://github.com/starvector/vllm).
298
-
299
- ```bash
300
- git clone https://github.com/starvector/vllm.git
301
- cd vllm
302
- pip install -e .
303
- ```
304
-
305
- Then, launch the using the vllm config file (it uses StarVectorVLLMValidator):
306
-
307
- ```bash
308
- # StarVector-1B
309
- python starvector/validation/validate.py \
310
- config=configs/generation/vllm/starvector-1b/im2svg.yaml \
311
- dataset.name=starvector/svg-stack
312
-
313
- # StarVector-8B
314
- python starvector/validation/validate.py \
315
- config=configs/generation/vllm/starvector-8b/im2svg.yaml \
316
- dataset.name=starvector/svg-stack
317
- ```
318
-
319
- #### Generate using Temperature Sweep
320
- Temperature sweep is an evaluation technique where we:
321
- 1. Generate multiple SVG candidates using different temperature values (controlling randomness in generation)
322
- 2. Evaluate each candidate using the DinoScore metric
323
- 3. Select the best performing SVG as the final output
324
-
325
- This approach improves result quality by exploring multiple generation possibilities, though it requires more computation time.
326
-
327
-
328
- ```bash
329
- # StarVector-1B (vLLM)
330
- python starvector/validation/run_validator.py \
331
- config=configs/generation/vllm/starvector-1b/im2svg.yaml \
332
- dataset.name=svg-stack \
333
- generation_params.generation_sweep=True \
334
- generation_params.num_generations_different_temp=5 \
335
- generation_params.min_temperature=0.0 \
336
- generation_params.max_temperature=0.5
337
-
338
- # StarVector-8B (vLLM)
339
- python starvector/validation/run_validator.py \
340
- config=configs/generation/vllm/starvector-8b/im2svg.yaml \
341
- dataset.name=svg-stack \
342
- generation_params.generation_sweep=True \
343
- generation_params.num_generations_different_temp=10 \
344
- generation_params.min_temperature=0.0 \
345
- generation_params.max_temperature=0.5
346
-
347
- ```
348
-
349
- We provide evaluation scripts in `scripts/eval/*`
350
-
351
-
352
- ## StarVector Demo
353
-
354
- The demo provides two options for converting images to SVG code:
355
- 1. HuggingFace generation functionality
356
- 2. VLLM (recommended) - offers faster generation speed
357
-
358
- ### Option 1: HuggingFace Generation with Gradio Web UI
359
-
360
- We provide a Gradio web UI for you to play with our model.
361
-
362
- #### Launch a controller
363
- ```Shell
364
- python -m starvector.serve.controller --host 0.0.0.0 --port 10000
365
- ```
366
-
367
- #### Launch a gradio web server.
368
- ```Shell
369
- python -m starvector.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7000
370
- ```
371
- You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
372
-
373
- #### Launch a model worker
374
-
375
- This is the actual *worker* that performs the inference on the GPU. Each worker is responsible for a single model specified in `--model-path`.
376
-
377
- ```Shell
378
- python -m starvector.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path joanrodai/starvector-1.4b
379
- ```
380
- Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
381
-
382
- You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker.
383
-
384
-
385
- ```Shell
386
- vllm serve starvector/starvector-8b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8001 --max-model-len 16000
387
-
388
- python -m starvector.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
389
- ```
390
-
391
- #### Option 2: Launch VLLM
392
-
393
- 0. Remember to clone the starvector/vllm fork (it has modifications for starvector).
394
-
395
- ```Shell
396
- git clone https://github.com/starvector/vllm.git
397
- cd vllm
398
- pip install -e .
399
- ```
400
-
401
- 1. Call this to launch the VLLM endpoint
402
-
403
-
404
- ```Shell
405
- vllm serve starvector/starvector-1b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8000 --max-model-len 8192
406
- ```
407
-
408
- 2. Create the demo for VLLM
409
-
410
- ```Shell
411
- python -m starvector.serve.vllm_api_gradio.controller --host 0.0.0.0 --port 10000
412
- python -m starvector.serve.vllm_api_gradio.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7000
413
- python -m starvector.serve.vllm_api_gradio.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-name starvector/starvector-1b-im2svg --vllm-base-url http://localhost:8000
414
- ```
415
-
416
- 3. Add more models by serving them with VLLM and calling a new model worker
417
-
418
- ```Shell
419
- vllm serve starvector/starvector-8b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8001 --max-model-len 16384
420
-
421
- python -m starvector.serve.vllm_api_gradio.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40001 --worker http://localhost:40001 --model-name starvector/starvector-8b-im2svg --vllm-base-url http://localhost:8001
422
- ```
423
-
424
- ## Citation
425
- ```
426
- @misc{rodriguez2024starvector,
427
- title={StarVector: Generating Scalable Vector Graphics Code from Images and Text},
428
- author={Juan A. Rodriguez and Abhay Puri and Shubham Agarwal and Issam H. Laradji and Pau Rodriguez and Sai Rajeswar and David Vazquez and Christopher Pal and Marco Pedersoli},
429
- year={2024},
430
- eprint={2312.11556},
431
- archivePrefix={arXiv},
432
- primaryClass={cs.CV},
433
- url={https://arxiv.org/abs/2312.11556},
434
- }
435
- ```
436
-
437
- ## License
438
- This project is licensed under the Apache License, Version 2.0 - see the [LICENSE](LICENSE) file for details.