File size: 4,758 Bytes
f2041d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Code adapted from https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/supervised_finetuning.py
# and https://huggingface.co/blog/gemma-peft
import argparse
import multiprocessing
import os

import torch
import transformers
from accelerate import PartialState
from datasets import load_dataset
from peft import AutoPeftModelForCausalLM, LoraConfig
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    is_torch_npu_available,
    is_torch_xpu_available,
    logging,
    set_seed,
)
from trl import SFTConfig, SFTTrainer


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_id", type=str, default="HuggingFaceTB/SmolLM2-1.7B")
    parser.add_argument("--tokenizer_id", type=str, default="")
    parser.add_argument("--dataset_name", type=str, default="bigcode/the-stack-smol")
    parser.add_argument("--subset", type=str, default="data/python")
    parser.add_argument("--split", type=str, default="train")
    parser.add_argument("--streaming", type=bool, default=False)
    parser.add_argument("--dataset_text_field", type=str, default="content")

    parser.add_argument("--max_seq_length", type=int, default=2048)
    parser.add_argument("--max_steps", type=int, default=1000)
    parser.add_argument("--micro_batch_size", type=int, default=1)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=4)
    parser.add_argument("--weight_decay", type=float, default=0.01)
    parser.add_argument("--bf16", type=bool, default=True)

    parser.add_argument("--use_bnb", type=bool, default=False)
    parser.add_argument("--attention_dropout", type=float, default=0.1)
    parser.add_argument("--learning_rate", type=float, default=2e-4)
    parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
    parser.add_argument("--warmup_steps", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--output_dir", type=str, default="finetune_smollm2_python")
    parser.add_argument("--num_proc", type=int, default=None)
    parser.add_argument("--push_to_hub", type=bool, default=True)
    parser.add_argument("--repo_id", type=str, default="SmolLM2-1.7B-finetune")
    return parser.parse_args()


def main(args):
    # config
    lora_config = LoraConfig(
        r=16,
        lora_alpha=32,
        lora_dropout=0.05,
        target_modules=["q_proj", "v_proj"],
        bias="none",
        task_type="CAUSAL_LM",
    )
    bnb_config = None
    if args.use_bnb:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
        )
    # load model and dataset
    token = os.environ.get("HF_TOKEN", None)
    model = AutoModelForCausalLM.from_pretrained(
        args.model_id,
        quantization_config=bnb_config,
        device_map={"": PartialState().process_index},
        attention_dropout=args.attention_dropout,
    )
    tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_id or args.model_id)

    data = load_dataset(
        args.dataset_name,
        data_dir=args.subset,
        split=args.split,
        token=token,
        num_proc=args.num_proc if args.num_proc or args.streaming else multiprocessing.cpu_count(),
        streaming=args.streaming,
    )

    # setup the trainer
    trainer = SFTTrainer(
        model=model,
        processing_class=tokenizer,
        train_dataset=data,
        args=SFTConfig(
            dataset_text_field=args.dataset_text_field,
            dataset_num_proc=args.num_proc,
            max_seq_length=args.max_seq_length,
            per_device_train_batch_size=args.micro_batch_size,
            gradient_accumulation_steps=args.gradient_accumulation_steps,
            warmup_steps=args.warmup_steps,
            max_steps=args.max_steps,
            learning_rate=args.learning_rate,
            lr_scheduler_type=args.lr_scheduler_type,
            weight_decay=args.weight_decay,
            bf16=args.bf16,
            logging_strategy="steps",
            logging_steps=10,
            output_dir=args.output_dir,
            optim="paged_adamw_8bit",
            seed=args.seed,
            run_name=f"train-{args.model_id.split('/')[-1]}",
            report_to="wandb",
            push_to_hub=args.push_to_hub,
            hub_model_id=args.repo_id,
        ),
        peft_config=lora_config,
    )

    # launch
    print("Training...")
    trainer.train()
    print("Training Done! 💥")


if __name__ == "__main__":
    args = get_args()
    set_seed(args.seed)
    os.makedirs(args.output_dir, exist_ok=True)

    logging.set_verbosity_error()

    main(args)