Spaces:
Running
Running
File size: 9,937 Bytes
9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e bf29377 9a96811 8a9db0e 9a96811 8a9db0e bf29377 9a96811 8a9db0e 9a96811 bf29377 8a9db0e bf29377 8a9db0e bf29377 8a9db0e bf29377 9a96811 bf29377 9a96811 bf29377 9a96811 bf29377 9a96811 bf29377 9a96811 bf29377 9a96811 bf29377 9a96811 bf29377 8a9db0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
from functools import partial, lru_cache
import duckdb
import gradio as gr
import pandas as pd
import requests
from huggingface_hub import HfApi
READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet")
EMPTY_DF = pd.DataFrame([{str(i): "" for i in range(4)}] * 10)
MAX_NUM_COLUMNS = 20
css = """
@media (prefers-color-scheme: dark) {
.transparent-dropdown, .transparent-dropdown .container .wrap {
background: var(--bg-dark);
}
}
@media (prefers-color-scheme: light) {
.transparent-dropdown, .transparent-dropdown .container .wrap {
background: var(--bg);
}
}
input {
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.cell-menu-button {
z-index: -1;
}
thead {
display: none;
}
"""
js = """
function setDataFrameReadonly() {
MutationObserver = window.MutationObserver || window.WebKitMutationObserver;
var observer = new MutationObserver(function(mutations, observer) {
// fired when a mutation occurs
document.querySelectorAll('.readonly-dataframe div .table-wrap button svelte-virtual-table-viewport table tbody tr td .cell-wrap input').forEach(i => i.setAttribute("readonly", "true"));
});
// define what element should be observed by the observer
// and what types of mutations trigger the callback
observer.observe(document, {
subtree: true,
childList: true
});
}
"""
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")
@lru_cache(maxsize=3)
def duckdb_sql(query: str) -> duckdb.DuckDBPyRelation:
return duckdb.sql(query)
def prepare_function(func: str, placeholder: str, column_name: str) -> str:
if "(" in func:
prepared_func = func.split("(")
prepared_func[1] = prepared_func[1].replace(placeholder, column_name, 1)
prepared_func = "(".join(prepared_func)
else:
prepared_func = func.replace(placeholder, column_name, 1)
return prepared_func
with gr.Blocks(css=css, js=js) as demo:
loading_codes_json = gr.JSON(visible=False)
dataset_subset_split_textbox = gr.Textbox(visible=False)
input_dataframe = gr.DataFrame(visible=False)
with gr.Group():
with gr.Row():
dataset_dropdown = gr.Dropdown(label="Open Dataset", allow_custom_value=True, scale=10)
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
gr.LoginButton()
with gr.Row():
transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in EMPTY_DF.columns]
transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")
def show_subset_dropdown(dataset: str):
if dataset and "/" not in dataset.strip().strip("/"):
return []
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or []
subsets = [loading_code["config_name"] for loading_code in loading_codes]
subset = (subsets or [""])[0]
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
def show_split_dropdown(subset: str, loading_codes: list[dict]):
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
def show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
if dataset and subset and split and pattern:
df = duckdb_sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT 10").df()
input_df = df
else:
input_df = EMPTY_DF
new_transform_dropdowns = [dict(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns]
new_transform_dropdowns += [dict(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
return [dict(value=df, column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns))] + new_transform_dropdowns
def set_dataframe(input_df: pd.DataFrame, *transforms: tuple[str], column_index: int):
try:
return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;").df()
except Exception as e:
gr.Error(f"{type(e).__name__}: {e}")
return input_df
for column_index, transform_dropdown in enumerate(transform_dropdowns):
transform_dropdown.select(partial(set_dataframe, column_index=column_index), inputs=[input_dataframe] + transform_dropdowns, outputs=dataframe)
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
api = HfApi(token=oauth_token.token if oauth_token else None)
datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"]))
if oauth_token and (user := api.whoami().get("name")):
datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
dataset = request.query_params.get("dataset") or datasets[0].id
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
return {
dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset),
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
input_dataframe: gr.DataFrame(**input_df),
dataframe: gr.DataFrame(**input_df),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
}
@dataset_dropdown.select(inputs=dataset_dropdown, outputs=[loading_codes_json, subset_dropdown, split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
def _show_subset_dropdown(dataset: str):
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
return {
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
input_dataframe: gr.DataFrame(**input_df),
dataframe: gr.DataFrame(**input_df),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
}
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
splits = show_split_dropdown(subset, loading_codes)
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subset, splits["value"], loading_codes)
return {
split_dropdown: gr.Dropdown(**splits),
input_dataframe: gr.DataFrame(**input_df),
dataframe: gr.DataFrame(**input_df),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
}
@split_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=[input_dataframe, dataframe] + transform_dropdowns)
def _show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subset, split, loading_codes)
return {
input_dataframe: gr.DataFrame(**input_df),
dataframe: gr.DataFrame(**input_df),
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
}
if __name__ == "__main__":
demo.launch()
|