File size: 9,937 Bytes
9a96811
 
 
8a9db0e
9a96811
8a9db0e
 
 
9a96811
 
 
8a9db0e
 
 
 
 
 
 
 
 
 
 
9a96811
 
 
 
 
 
 
 
 
 
 
 
8a9db0e
9a96811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9db0e
bf29377
 
 
 
9a96811
 
 
 
 
 
 
 
 
 
8a9db0e
 
9a96811
 
 
 
 
 
 
 
 
 
 
8a9db0e
bf29377
9a96811
8a9db0e
9a96811
bf29377
8a9db0e
 
bf29377
8a9db0e
bf29377
8a9db0e
 
bf29377
 
 
9a96811
 
bf29377
 
9a96811
bf29377
 
 
 
9a96811
bf29377
9a96811
bf29377
9a96811
bf29377
 
9a96811
 
bf29377
9a96811
bf29377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9db0e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from functools import partial, lru_cache

import duckdb
import gradio as gr
import pandas as pd
import requests
from huggingface_hub import HfApi

READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet")
EMPTY_DF = pd.DataFrame([{str(i): "" for i in range(4)}] * 10)
MAX_NUM_COLUMNS = 20
css = """
@media (prefers-color-scheme: dark) {
    .transparent-dropdown, .transparent-dropdown .container .wrap  {
        background: var(--bg-dark);
    }
}
@media (prefers-color-scheme: light) {
    .transparent-dropdown, .transparent-dropdown .container .wrap  {
        background: var(--bg);
    }
}
input {
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;          
}
.cell-menu-button {
    z-index: -1;
}
thead {
    display: none;
}
"""
js = """
function setDataFrameReadonly() {
    MutationObserver = window.MutationObserver || window.WebKitMutationObserver;
    var observer = new MutationObserver(function(mutations, observer) {
        // fired when a mutation occurs
        document.querySelectorAll('.readonly-dataframe div .table-wrap button svelte-virtual-table-viewport table tbody tr td .cell-wrap input').forEach(i => i.setAttribute("readonly", "true"));
    });
    // define what element should be observed by the observer
    // and what types of mutations trigger the callback
    observer.observe(document, {
        subtree: true,
        childList: true
    });
    
}
"""
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")

@lru_cache(maxsize=3)
def duckdb_sql(query: str) -> duckdb.DuckDBPyRelation:
    return duckdb.sql(query)

def prepare_function(func: str, placeholder: str, column_name: str) -> str:
    if "(" in func:
        prepared_func = func.split("(")
        prepared_func[1] = prepared_func[1].replace(placeholder, column_name, 1)
        prepared_func = "(".join(prepared_func)
    else:
        prepared_func = func.replace(placeholder, column_name, 1)
    return prepared_func

with gr.Blocks(css=css, js=js) as demo:
    loading_codes_json = gr.JSON(visible=False)
    dataset_subset_split_textbox = gr.Textbox(visible=False)
    input_dataframe = gr.DataFrame(visible=False)
    with gr.Group():
        with gr.Row():
            dataset_dropdown = gr.Dropdown(label="Open Dataset", allow_custom_value=True, scale=10)
            subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
            split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
            gr.LoginButton()
        with gr.Row():
            transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in EMPTY_DF.columns]
            transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
        dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")

    def show_subset_dropdown(dataset: str):
        if dataset and "/" not in dataset.strip().strip("/"):
            return []
        resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
        loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or []
        subsets = [loading_code["config_name"] for loading_code in loading_codes]
        subset = (subsets or [""])[0]
        return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes

    def show_split_dropdown(subset: str, loading_codes: list[dict]):
        splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
        split = (splits or [""])[0]
        return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))

    def show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
        pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
        if dataset and subset and split and pattern:
            df = duckdb_sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT 10").df()
            input_df = df
        else:
            input_df = EMPTY_DF
        new_transform_dropdowns = [dict(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns]
        new_transform_dropdowns += [dict(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
        return [dict(value=df, column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns))] + new_transform_dropdowns
    
    def set_dataframe(input_df: pd.DataFrame, *transforms: tuple[str], column_index: int):
        try:
            return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;").df()
        except Exception as e:
            gr.Error(f"{type(e).__name__}: {e}")
            return input_df
    
    for column_index, transform_dropdown in enumerate(transform_dropdowns):
        transform_dropdown.select(partial(set_dataframe, column_index=column_index), inputs=[input_dataframe] + transform_dropdowns, outputs=dataframe)

    @demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
    def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
        api = HfApi(token=oauth_token.token if oauth_token else None)
        datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"]))
        if oauth_token and (user := api.whoami().get("name")):
            datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
        dataset = request.query_params.get("dataset") or datasets[0].id
        subsets, loading_codes = show_subset_dropdown(dataset)
        splits = show_split_dropdown(subsets["value"], loading_codes)
        input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
        return {
            dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset),
            loading_codes_json: loading_codes,
            subset_dropdown: gr.Dropdown(**subsets),
            split_dropdown: gr.Dropdown(**splits),
            input_dataframe: gr.DataFrame(**input_df),
            dataframe: gr.DataFrame(**input_df),
            **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
        }
    
    @dataset_dropdown.select(inputs=dataset_dropdown, outputs=[loading_codes_json, subset_dropdown, split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
    def _show_subset_dropdown(dataset: str):
        subsets, loading_codes = show_subset_dropdown(dataset)
        splits = show_split_dropdown(subsets["value"], loading_codes)
        input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
        return {
            loading_codes_json: loading_codes,
            subset_dropdown: gr.Dropdown(**subsets),
            split_dropdown: gr.Dropdown(**splits),
            input_dataframe: gr.DataFrame(**input_df),
            dataframe: gr.DataFrame(**input_df),
            **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
        }
    
    @subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
    def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
        splits = show_split_dropdown(subset, loading_codes)
        input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subset, splits["value"], loading_codes)
        return {
            split_dropdown: gr.Dropdown(**splits),
            input_dataframe: gr.DataFrame(**input_df),
            dataframe: gr.DataFrame(**input_df),
            **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
        }
    
    @split_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=[input_dataframe, dataframe] + transform_dropdowns)
    def _show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
        input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subset, split, loading_codes)
        return {
            input_dataframe: gr.DataFrame(**input_df),
            dataframe: gr.DataFrame(**input_df),
            **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
        }


if __name__ == "__main__":
    demo.launch()