Spaces:
Running
Running
update to mistral v0.2, add selectable embeddings
Browse files- streamlit_app.py +52 -12
streamlit_app.py
CHANGED
|
@@ -24,9 +24,23 @@ OPENAI_MODELS = ['gpt-3.5-turbo',
|
|
| 24 |
"gpt-4",
|
| 25 |
"gpt-4-1106-preview"]
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
OPEN_MODELS = {
|
| 28 |
-
'mistral-7b-instruct-v0.
|
| 29 |
"zephyr-7b-beta": 'HuggingFaceH4/zephyr-7b-beta'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
}
|
| 31 |
|
| 32 |
DISABLE_MEMORY = ['zephyr-7b-beta']
|
|
@@ -83,6 +97,9 @@ if 'pdf' not in st.session_state:
|
|
| 83 |
if 'pdf_rendering' not in st.session_state:
|
| 84 |
st.session_state['pdf_rendering'] = None
|
| 85 |
|
|
|
|
|
|
|
|
|
|
| 86 |
st.set_page_config(
|
| 87 |
page_title="Scientific Document Insights Q/A",
|
| 88 |
page_icon="π",
|
|
@@ -139,24 +156,34 @@ def clear_memory():
|
|
| 139 |
|
| 140 |
|
| 141 |
# @st.cache_resource
|
| 142 |
-
def init_qa(model, api_key=None):
|
| 143 |
## For debug add: callbacks=[PromptLayerCallbackHandler(pl_tags=["langchain", "chatgpt", "document-qa"])])
|
| 144 |
if model in OPENAI_MODELS:
|
|
|
|
|
|
|
|
|
|
| 145 |
st.session_state['memory'] = ConversationBufferWindowMemory(k=4)
|
| 146 |
if api_key:
|
| 147 |
chat = ChatOpenAI(model_name=model,
|
| 148 |
temperature=0,
|
| 149 |
openai_api_key=api_key,
|
| 150 |
frequency_penalty=0.1)
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
else:
|
| 154 |
chat = ChatOpenAI(model_name=model,
|
| 155 |
temperature=0,
|
| 156 |
frequency_penalty=0.1)
|
| 157 |
-
embeddings = OpenAIEmbeddings()
|
| 158 |
|
| 159 |
elif model in OPEN_MODELS:
|
|
|
|
|
|
|
|
|
|
| 160 |
chat = HuggingFaceEndpoint(
|
| 161 |
repo_id=OPEN_MODELS[model],
|
| 162 |
temperature=0.01,
|
|
@@ -164,7 +191,7 @@ def init_qa(model, api_key=None):
|
|
| 164 |
model_kwargs={"max_length": 4096}
|
| 165 |
)
|
| 166 |
embeddings = HuggingFaceEmbeddings(
|
| 167 |
-
model_name=
|
| 168 |
st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
|
| 169 |
else:
|
| 170 |
st.error("The model was not loaded properly. Try reloading. ")
|
|
@@ -231,15 +258,25 @@ with st.sidebar:
|
|
| 231 |
"Model:",
|
| 232 |
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
|
| 233 |
index=(OPENAI_MODELS + list(OPEN_MODELS.keys())).index(
|
| 234 |
-
"
|
| 235 |
OPENAI_MODELS + list(OPEN_MODELS.keys())).index(os.environ["DEFAULT_MODEL"]),
|
| 236 |
placeholder="Select model",
|
| 237 |
help="Select the LLM model:",
|
| 238 |
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
|
| 239 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
st.markdown(
|
| 242 |
-
":warning: [Usage disclaimer](https://github.com/lfoppiano/document-qa
|
| 243 |
|
| 244 |
if (model in OPEN_MODELS) and model not in st.session_state['api_keys']:
|
| 245 |
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
|
@@ -256,7 +293,7 @@ with st.sidebar:
|
|
| 256 |
st.session_state['api_keys'][model] = api_key
|
| 257 |
# if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
| 258 |
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
|
| 259 |
-
st.session_state['rqa'][model] = init_qa(model)
|
| 260 |
|
| 261 |
elif model in OPENAI_MODELS and model not in st.session_state['api_keys']:
|
| 262 |
if 'OPENAI_API_KEY' not in os.environ:
|
|
@@ -270,9 +307,9 @@ with st.sidebar:
|
|
| 270 |
with st.spinner("Preparing environment"):
|
| 271 |
st.session_state['api_keys'][model] = api_key
|
| 272 |
if 'OPENAI_API_KEY' not in os.environ:
|
| 273 |
-
st.session_state['rqa'][model] = init_qa(model, api_key)
|
| 274 |
else:
|
| 275 |
-
st.session_state['rqa'][model] = init_qa(model)
|
| 276 |
# else:
|
| 277 |
# is_api_key_provided = st.session_state['api_key']
|
| 278 |
|
|
@@ -371,10 +408,13 @@ with st.sidebar:
|
|
| 371 |
|
| 372 |
st.header("Query mode (Advanced use)")
|
| 373 |
st.markdown(
|
| 374 |
-
"""By default, the mode is set to LLM (Language Model) which enables question/answering.
|
|
|
|
| 375 |
|
| 376 |
st.markdown(
|
| 377 |
-
"""If you switch the mode to "Embedding," the system will return specific chunks from the document
|
|
|
|
|
|
|
| 378 |
|
| 379 |
if uploaded_file and not st.session_state.loaded_embeddings:
|
| 380 |
if model not in st.session_state['api_keys']:
|
|
|
|
| 24 |
"gpt-4",
|
| 25 |
"gpt-4-1106-preview"]
|
| 26 |
|
| 27 |
+
OPENAI_EMBEDDINGS = [
|
| 28 |
+
'text-embedding-ada-002',
|
| 29 |
+
'text-embedding-3-large',
|
| 30 |
+
'openai-text-embedding-3-small'
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
OPEN_MODELS = {
|
| 34 |
+
'mistral-7b-instruct-v0.2': 'mistralai/Mistral-7B-Instruct-v0.2',
|
| 35 |
"zephyr-7b-beta": 'HuggingFaceH4/zephyr-7b-beta'
|
| 36 |
+
# 'Phi-3-mini-128k-instruct': "microsoft/Phi-3-mini-128k-instruct",
|
| 37 |
+
# 'Phi-3-mini-4k-instruct': "microsoft/Phi-3-mini-4k-instruct"
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
DEFAULT_OPEN_EMBEDDING_NAME = 'Default (all-MiniLM-L6-v2)'
|
| 41 |
+
OPEN_EMBEDDINGS = {
|
| 42 |
+
DEFAULT_OPEN_EMBEDDING_NAME: 'all-MiniLM-L6-v2',
|
| 43 |
+
'Salesforce/SFR-Embedding-Mistral': 'Salesforce/SFR-Embedding-Mistral'
|
| 44 |
}
|
| 45 |
|
| 46 |
DISABLE_MEMORY = ['zephyr-7b-beta']
|
|
|
|
| 97 |
if 'pdf_rendering' not in st.session_state:
|
| 98 |
st.session_state['pdf_rendering'] = None
|
| 99 |
|
| 100 |
+
if 'embeddings' not in st.session_state:
|
| 101 |
+
st.session_state['embeddings'] = None
|
| 102 |
+
|
| 103 |
st.set_page_config(
|
| 104 |
page_title="Scientific Document Insights Q/A",
|
| 105 |
page_icon="π",
|
|
|
|
| 156 |
|
| 157 |
|
| 158 |
# @st.cache_resource
|
| 159 |
+
def init_qa(model, embeddings_name=None, api_key=None):
|
| 160 |
## For debug add: callbacks=[PromptLayerCallbackHandler(pl_tags=["langchain", "chatgpt", "document-qa"])])
|
| 161 |
if model in OPENAI_MODELS:
|
| 162 |
+
if embeddings_name is None:
|
| 163 |
+
embeddings_name = 'text-embedding-ada-002'
|
| 164 |
+
|
| 165 |
st.session_state['memory'] = ConversationBufferWindowMemory(k=4)
|
| 166 |
if api_key:
|
| 167 |
chat = ChatOpenAI(model_name=model,
|
| 168 |
temperature=0,
|
| 169 |
openai_api_key=api_key,
|
| 170 |
frequency_penalty=0.1)
|
| 171 |
+
if embeddings_name not in OPENAI_EMBEDDINGS:
|
| 172 |
+
st.error(f"The embeddings provided {embeddings_name} are not supported by this model {model}.")
|
| 173 |
+
st.stop()
|
| 174 |
+
return
|
| 175 |
+
embeddings = OpenAIEmbeddings(model=embeddings_name, openai_api_key=api_key)
|
| 176 |
|
| 177 |
else:
|
| 178 |
chat = ChatOpenAI(model_name=model,
|
| 179 |
temperature=0,
|
| 180 |
frequency_penalty=0.1)
|
| 181 |
+
embeddings = OpenAIEmbeddings(model=embeddings_name)
|
| 182 |
|
| 183 |
elif model in OPEN_MODELS:
|
| 184 |
+
if embeddings_name is None:
|
| 185 |
+
embeddings_name = DEFAULT_OPEN_EMBEDDING_NAME
|
| 186 |
+
|
| 187 |
chat = HuggingFaceEndpoint(
|
| 188 |
repo_id=OPEN_MODELS[model],
|
| 189 |
temperature=0.01,
|
|
|
|
| 191 |
model_kwargs={"max_length": 4096}
|
| 192 |
)
|
| 193 |
embeddings = HuggingFaceEmbeddings(
|
| 194 |
+
model_name=OPEN_EMBEDDINGS[embeddings_name])
|
| 195 |
st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
|
| 196 |
else:
|
| 197 |
st.error("The model was not loaded properly. Try reloading. ")
|
|
|
|
| 258 |
"Model:",
|
| 259 |
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
|
| 260 |
index=(OPENAI_MODELS + list(OPEN_MODELS.keys())).index(
|
| 261 |
+
"mistral-7b-instruct-v0.2") if "DEFAULT_MODEL" not in os.environ or not os.environ["DEFAULT_MODEL"] else (
|
| 262 |
OPENAI_MODELS + list(OPEN_MODELS.keys())).index(os.environ["DEFAULT_MODEL"]),
|
| 263 |
placeholder="Select model",
|
| 264 |
help="Select the LLM model:",
|
| 265 |
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
|
| 266 |
)
|
| 267 |
+
embedding_choices = OPENAI_EMBEDDINGS if model in OPENAI_MODELS else OPEN_EMBEDDINGS
|
| 268 |
+
|
| 269 |
+
st.session_state['embeddings'] = embedding_name = st.selectbox(
|
| 270 |
+
"Embeddings:",
|
| 271 |
+
options=embedding_choices,
|
| 272 |
+
index=0,
|
| 273 |
+
placeholder="Select embedding",
|
| 274 |
+
help="Select the Embedding function:",
|
| 275 |
+
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
|
| 276 |
+
)
|
| 277 |
|
| 278 |
st.markdown(
|
| 279 |
+
":warning: [Usage disclaimer](https://github.com/lfoppiano/document-qa?tab=readme-ov-file#disclaimer-on-data-security-and-privacy-%EF%B8%8F) :warning: ")
|
| 280 |
|
| 281 |
if (model in OPEN_MODELS) and model not in st.session_state['api_keys']:
|
| 282 |
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
|
|
|
| 293 |
st.session_state['api_keys'][model] = api_key
|
| 294 |
# if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
| 295 |
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
|
| 296 |
+
st.session_state['rqa'][model] = init_qa(model, embedding_name)
|
| 297 |
|
| 298 |
elif model in OPENAI_MODELS and model not in st.session_state['api_keys']:
|
| 299 |
if 'OPENAI_API_KEY' not in os.environ:
|
|
|
|
| 307 |
with st.spinner("Preparing environment"):
|
| 308 |
st.session_state['api_keys'][model] = api_key
|
| 309 |
if 'OPENAI_API_KEY' not in os.environ:
|
| 310 |
+
st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'], api_key)
|
| 311 |
else:
|
| 312 |
+
st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'])
|
| 313 |
# else:
|
| 314 |
# is_api_key_provided = st.session_state['api_key']
|
| 315 |
|
|
|
|
| 408 |
|
| 409 |
st.header("Query mode (Advanced use)")
|
| 410 |
st.markdown(
|
| 411 |
+
"""By default, the mode is set to LLM (Language Model) which enables question/answering.
|
| 412 |
+
You can directly ask questions related to the document content, and the system will answer the question using content from the document.""")
|
| 413 |
|
| 414 |
st.markdown(
|
| 415 |
+
"""If you switch the mode to "Embedding," the system will return specific chunks from the document
|
| 416 |
+
that are semantically related to your query. This mode helps to test why sometimes the answers are not
|
| 417 |
+
satisfying or incomplete. """)
|
| 418 |
|
| 419 |
if uploaded_file and not st.session_state.loaded_embeddings:
|
| 420 |
if model not in st.session_state['api_keys']:
|