Spaces:
Running
Running
Merge pull request #30 from lfoppiano/question-coefficient
Browse files- .github/workflows/ci-build.yml +1 -1
- Dockerfile +0 -2
- document_qa/document_qa_engine.py +188 -86
- document_qa/grobid_processors.py +52 -59
- document_qa/langchain.py +141 -0
- client.py → document_qa/ner_client_generic.py +237 -1
- grobid_client_generic.py +0 -264
- requirements.txt +14 -12
- streamlit_app.py +118 -51
.github/workflows/ci-build.yml
CHANGED
@@ -26,7 +26,7 @@ jobs:
|
|
26 |
- name: Install dependencies
|
27 |
run: |
|
28 |
python -m pip install --upgrade pip
|
29 |
-
pip install --upgrade flake8 pytest pycodestyle
|
30 |
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
|
31 |
- name: Lint with flake8
|
32 |
run: |
|
|
|
26 |
- name: Install dependencies
|
27 |
run: |
|
28 |
python -m pip install --upgrade pip
|
29 |
+
pip install --upgrade flake8 pytest pycodestyle pytest-cov
|
30 |
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
|
31 |
- name: Lint with flake8
|
32 |
run: |
|
Dockerfile
CHANGED
@@ -15,8 +15,6 @@ RUN pip3 install -r requirements.txt
|
|
15 |
|
16 |
COPY .streamlit ./.streamlit
|
17 |
COPY document_qa ./document_qa
|
18 |
-
COPY grobid_client_generic.py .
|
19 |
-
COPY client.py .
|
20 |
COPY streamlit_app.py .
|
21 |
|
22 |
# extract version
|
|
|
15 |
|
16 |
COPY .streamlit ./.streamlit
|
17 |
COPY document_qa ./document_qa
|
|
|
|
|
18 |
COPY streamlit_app.py .
|
19 |
|
20 |
# extract version
|
document_qa/document_qa_engine.py
CHANGED
@@ -1,23 +1,31 @@
|
|
1 |
import copy
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
-
from typing import Union, Any
|
5 |
|
6 |
import tiktoken
|
7 |
-
from grobid_client.grobid_client import GrobidClient
|
8 |
from langchain.chains import create_extraction_chain
|
9 |
from langchain.chains.question_answering import load_qa_chain, stuff_prompt, refine_prompts, map_reduce_prompt, \
|
10 |
map_rerank_prompt
|
|
|
11 |
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
|
12 |
from langchain.retrievers import MultiQueryRetriever
|
13 |
from langchain.schema import Document
|
14 |
-
from
|
|
|
15 |
from tqdm import tqdm
|
16 |
|
|
|
17 |
from document_qa.grobid_processors import GrobidProcessor
|
|
|
18 |
|
19 |
|
20 |
class TextMerger:
|
|
|
|
|
|
|
|
|
|
|
21 |
def __init__(self, model_name=None, encoding_name="gpt2"):
|
22 |
if model_name is not None:
|
23 |
self.enc = tiktoken.encoding_for_model(model_name)
|
@@ -86,57 +94,56 @@ class TextMerger:
|
|
86 |
return new_passages_struct
|
87 |
|
88 |
|
89 |
-
class
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
embeddings_dict = {}
|
94 |
embeddings_map_from_md5 = {}
|
95 |
embeddings_map_to_md5 = {}
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
llm,
|
106 |
-
embedding_function,
|
107 |
-
qa_chain_type="stuff",
|
108 |
-
embeddings_root_path=None,
|
109 |
-
grobid_url=None,
|
110 |
-
memory=None
|
111 |
-
):
|
112 |
self.embedding_function = embedding_function
|
113 |
-
self.llm = llm
|
114 |
-
self.memory = memory
|
115 |
-
self.chain = load_qa_chain(llm, chain_type=qa_chain_type)
|
116 |
-
self.text_merger = TextMerger()
|
117 |
|
118 |
-
if
|
119 |
-
self.embeddings_root_path =
|
120 |
-
if not os.path.exists(
|
121 |
-
os.makedirs(
|
122 |
else:
|
123 |
self.load_embeddings(self.embeddings_root_path)
|
124 |
|
125 |
-
if grobid_url:
|
126 |
-
self.grobid_url = grobid_url
|
127 |
-
grobid_client = GrobidClient(
|
128 |
-
grobid_server=self.grobid_url,
|
129 |
-
batch_size=1000,
|
130 |
-
coordinates=["p", "title", "persName"],
|
131 |
-
sleep_time=5,
|
132 |
-
timeout=60,
|
133 |
-
check_server=True
|
134 |
-
)
|
135 |
-
self.grobid_processor = GrobidProcessor(grobid_client)
|
136 |
-
|
137 |
def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None:
|
138 |
"""
|
139 |
-
Load the
|
140 |
The root path of the embeddings containing one data store for each document in each subdirectory
|
141 |
"""
|
142 |
|
@@ -147,8 +154,10 @@ class DocumentQAEngine:
|
|
147 |
return
|
148 |
|
149 |
for embedding_document_dir in embeddings_directories:
|
150 |
-
self.embeddings_dict[embedding_document_dir.name] =
|
151 |
-
|
|
|
|
|
152 |
|
153 |
filename_list = list(Path(embedding_document_dir).glob('*.storage_filename'))
|
154 |
if filename_list:
|
@@ -167,9 +176,60 @@ class DocumentQAEngine:
|
|
167 |
def get_filename_from_md5(self, md5):
|
168 |
return self.embeddings_map_from_md5[md5]
|
169 |
|
170 |
-
def
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
# self.load_embeddings(self.embeddings_root_path)
|
174 |
|
175 |
if verbose:
|
@@ -198,11 +258,52 @@ class DocumentQAEngine:
|
|
198 |
else:
|
199 |
return None, response, coordinates
|
200 |
|
201 |
-
def query_storage(self, query: str, doc_id, context_size=4):
|
202 |
-
|
|
|
|
|
|
|
203 |
|
204 |
context_as_text = [doc.page_content for doc in documents]
|
205 |
-
return context_as_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
def _parse_json(self, response, output_parser):
|
208 |
system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \
|
@@ -225,11 +326,8 @@ class DocumentQAEngine:
|
|
225 |
|
226 |
return parsed_output
|
227 |
|
228 |
-
def _run_query(self, doc_id, query, context_size=4):
|
229 |
-
relevant_documents = self._get_context(doc_id, query, context_size)
|
230 |
-
relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
|
231 |
-
for doc in
|
232 |
-
relevant_documents] # filter(lambda d: d['type'] == "sentence", relevant_documents)]
|
233 |
response = self.chain.run(input_documents=relevant_documents,
|
234 |
question=query)
|
235 |
|
@@ -237,39 +335,46 @@ class DocumentQAEngine:
|
|
237 |
self.memory.save_context({"input": query}, {"output": response})
|
238 |
return response, relevant_document_coordinates
|
239 |
|
240 |
-
def _get_context(self, doc_id, query, context_size=4):
|
241 |
-
db = self.embeddings_dict[doc_id]
|
242 |
retriever = db.as_retriever(search_kwargs={"k": context_size})
|
243 |
relevant_documents = retriever.get_relevant_documents(query)
|
|
|
|
|
|
|
244 |
if self.memory and len(self.memory.buffer_as_messages) > 0:
|
245 |
relevant_documents.append(
|
246 |
Document(
|
247 |
page_content="""Following, the previous question and answers. Use these information only when in the question there are unspecified references:\n{}\n\n""".format(
|
248 |
self.memory.buffer_as_str))
|
249 |
)
|
250 |
-
return relevant_documents
|
251 |
|
252 |
-
def
|
253 |
-
"""
|
254 |
-
|
|
|
|
|
255 |
docs = db.get()
|
256 |
return docs['documents']
|
257 |
|
258 |
def _get_context_multiquery(self, doc_id, query, context_size=4):
|
259 |
-
db = self.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size})
|
260 |
multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm)
|
261 |
relevant_documents = multi_query_retriever.get_relevant_documents(query)
|
262 |
return relevant_documents
|
263 |
|
264 |
def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False):
|
265 |
"""
|
266 |
-
Extract text from documents using Grobid
|
|
|
|
|
267 |
"""
|
268 |
if verbose:
|
269 |
print("File", pdf_file_path)
|
270 |
filename = Path(pdf_file_path).stem
|
271 |
coordinates = True # if chunk_size == -1 else False
|
272 |
-
structure = self.grobid_processor.
|
273 |
|
274 |
biblio = structure['biblio']
|
275 |
biblio['filename'] = filename.replace(" ", "_")
|
@@ -303,7 +408,13 @@ class DocumentQAEngine:
|
|
303 |
|
304 |
return texts, metadatas, ids
|
305 |
|
306 |
-
def create_memory_embeddings(
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
texts, metadata, ids = self.get_text_from_document(
|
308 |
pdf_path,
|
309 |
chunk_size=chunk_size,
|
@@ -313,25 +424,17 @@ class DocumentQAEngine:
|
|
313 |
else:
|
314 |
hash = metadata[0]['hash']
|
315 |
|
316 |
-
|
317 |
-
self.embeddings_dict[hash] = Chroma.from_texts(texts,
|
318 |
-
embedding=self.embedding_function,
|
319 |
-
metadatas=metadata,
|
320 |
-
collection_name=hash)
|
321 |
-
else:
|
322 |
-
# if 'documents' in self.embeddings_dict[hash].get() and len(self.embeddings_dict[hash].get()['documents']) == 0:
|
323 |
-
# self.embeddings_dict[hash].delete(ids=self.embeddings_dict[hash].get()['ids'])
|
324 |
-
self.embeddings_dict[hash].delete_collection()
|
325 |
-
self.embeddings_dict[hash] = Chroma.from_texts(texts,
|
326 |
-
embedding=self.embedding_function,
|
327 |
-
metadatas=metadata,
|
328 |
-
collection_name=hash)
|
329 |
-
|
330 |
-
self.embeddings_root_path = None
|
331 |
|
332 |
return hash
|
333 |
|
334 |
-
def create_embeddings(
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
input_files = []
|
336 |
for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False):
|
337 |
for file_ in files:
|
@@ -343,17 +446,16 @@ class DocumentQAEngine:
|
|
343 |
desc="Grobid + embeddings processing"):
|
344 |
|
345 |
md5 = self.calculate_md5(input_file)
|
346 |
-
data_path = os.path.join(self.embeddings_root_path, md5)
|
347 |
|
348 |
if os.path.exists(data_path):
|
349 |
print(data_path, "exists. Skipping it ")
|
350 |
continue
|
351 |
-
include = ["biblio"] if include_biblio else []
|
352 |
texts, metadata, ids = self.get_text_from_document(
|
353 |
input_file,
|
354 |
chunk_size=chunk_size,
|
355 |
-
perc_overlap=perc_overlap
|
356 |
-
include=include)
|
357 |
filename = metadata[0]['filename']
|
358 |
|
359 |
vector_db_document = Chroma.from_texts(texts,
|
|
|
1 |
import copy
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
+
from typing import Union, Any, List
|
5 |
|
6 |
import tiktoken
|
|
|
7 |
from langchain.chains import create_extraction_chain
|
8 |
from langchain.chains.question_answering import load_qa_chain, stuff_prompt, refine_prompts, map_reduce_prompt, \
|
9 |
map_rerank_prompt
|
10 |
+
from langchain.evaluation import PairwiseEmbeddingDistanceEvalChain, load_evaluator, EmbeddingDistance
|
11 |
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
|
12 |
from langchain.retrievers import MultiQueryRetriever
|
13 |
from langchain.schema import Document
|
14 |
+
from langchain_community.vectorstores.chroma import Chroma
|
15 |
+
from langchain_core.vectorstores import VectorStore
|
16 |
from tqdm import tqdm
|
17 |
|
18 |
+
# from document_qa.embedding_visualiser import QueryVisualiser
|
19 |
from document_qa.grobid_processors import GrobidProcessor
|
20 |
+
from document_qa.langchain import ChromaAdvancedRetrieval
|
21 |
|
22 |
|
23 |
class TextMerger:
|
24 |
+
"""
|
25 |
+
This class tries to replicate the RecursiveTextSplitter from LangChain, to preserve and merge the
|
26 |
+
coordinate information from the PDF document.
|
27 |
+
"""
|
28 |
+
|
29 |
def __init__(self, model_name=None, encoding_name="gpt2"):
|
30 |
if model_name is not None:
|
31 |
self.enc = tiktoken.encoding_for_model(model_name)
|
|
|
94 |
return new_passages_struct
|
95 |
|
96 |
|
97 |
+
class BaseRetrieval:
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
persist_directory: Path,
|
102 |
+
embedding_function
|
103 |
+
):
|
104 |
+
self.embedding_function = embedding_function
|
105 |
+
self.persist_directory = persist_directory
|
106 |
+
|
107 |
+
|
108 |
+
class NER_Retrival(VectorStore):
|
109 |
+
"""
|
110 |
+
This class implement a retrieval based on NER models.
|
111 |
+
This is an alternative retrieval to embeddings that relies on extracted entities.
|
112 |
+
"""
|
113 |
+
pass
|
114 |
+
|
115 |
+
|
116 |
+
engines = {
|
117 |
+
'chroma': ChromaAdvancedRetrieval,
|
118 |
+
'ner': NER_Retrival
|
119 |
+
}
|
120 |
+
|
121 |
+
|
122 |
+
class DataStorage:
|
123 |
embeddings_dict = {}
|
124 |
embeddings_map_from_md5 = {}
|
125 |
embeddings_map_to_md5 = {}
|
126 |
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
embedding_function,
|
130 |
+
root_path: Path = None,
|
131 |
+
engine=ChromaAdvancedRetrieval,
|
132 |
+
) -> None:
|
133 |
+
self.root_path = root_path
|
134 |
+
self.engine = engine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
self.embedding_function = embedding_function
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
if root_path is not None:
|
138 |
+
self.embeddings_root_path = root_path
|
139 |
+
if not os.path.exists(root_path):
|
140 |
+
os.makedirs(root_path)
|
141 |
else:
|
142 |
self.load_embeddings(self.embeddings_root_path)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None:
|
145 |
"""
|
146 |
+
Load the vector storage assuming they are all persisted and stored in a single directory.
|
147 |
The root path of the embeddings containing one data store for each document in each subdirectory
|
148 |
"""
|
149 |
|
|
|
154 |
return
|
155 |
|
156 |
for embedding_document_dir in embeddings_directories:
|
157 |
+
self.embeddings_dict[embedding_document_dir.name] = self.engine(
|
158 |
+
persist_directory=embedding_document_dir.path,
|
159 |
+
embedding_function=self.embedding_function
|
160 |
+
)
|
161 |
|
162 |
filename_list = list(Path(embedding_document_dir).glob('*.storage_filename'))
|
163 |
if filename_list:
|
|
|
176 |
def get_filename_from_md5(self, md5):
|
177 |
return self.embeddings_map_from_md5[md5]
|
178 |
|
179 |
+
def embed_document(self, doc_id, texts, metadatas):
|
180 |
+
if doc_id not in self.embeddings_dict.keys():
|
181 |
+
self.embeddings_dict[doc_id] = self.engine.from_texts(texts,
|
182 |
+
embedding=self.embedding_function,
|
183 |
+
metadatas=metadatas,
|
184 |
+
collection_name=doc_id)
|
185 |
+
else:
|
186 |
+
# Workaround Chroma (?) breaking change
|
187 |
+
self.embeddings_dict[doc_id].delete_collection()
|
188 |
+
self.embeddings_dict[doc_id] = self.engine.from_texts(texts,
|
189 |
+
embedding=self.embedding_function,
|
190 |
+
metadatas=metadatas,
|
191 |
+
collection_name=doc_id)
|
192 |
+
|
193 |
+
self.embeddings_root_path = None
|
194 |
+
|
195 |
+
|
196 |
+
class DocumentQAEngine:
|
197 |
+
llm = None
|
198 |
+
qa_chain_type = None
|
199 |
+
|
200 |
+
default_prompts = {
|
201 |
+
'stuff': stuff_prompt,
|
202 |
+
'refine': refine_prompts,
|
203 |
+
"map_reduce": map_reduce_prompt,
|
204 |
+
"map_rerank": map_rerank_prompt
|
205 |
+
}
|
206 |
+
|
207 |
+
def __init__(self,
|
208 |
+
llm,
|
209 |
+
data_storage: DataStorage,
|
210 |
+
qa_chain_type="stuff",
|
211 |
+
grobid_url=None,
|
212 |
+
memory=None
|
213 |
+
):
|
214 |
+
|
215 |
+
self.llm = llm
|
216 |
+
self.memory = memory
|
217 |
+
self.chain = load_qa_chain(llm, chain_type=qa_chain_type)
|
218 |
+
self.text_merger = TextMerger()
|
219 |
+
self.data_storage = data_storage
|
220 |
+
|
221 |
+
if grobid_url:
|
222 |
+
self.grobid_processor = GrobidProcessor(grobid_url)
|
223 |
+
|
224 |
+
def query_document(
|
225 |
+
self,
|
226 |
+
query: str,
|
227 |
+
doc_id,
|
228 |
+
output_parser=None,
|
229 |
+
context_size=4,
|
230 |
+
extraction_schema=None,
|
231 |
+
verbose=False
|
232 |
+
) -> (Any, str):
|
233 |
# self.load_embeddings(self.embeddings_root_path)
|
234 |
|
235 |
if verbose:
|
|
|
258 |
else:
|
259 |
return None, response, coordinates
|
260 |
|
261 |
+
def query_storage(self, query: str, doc_id, context_size=4) -> (List[Document], list):
|
262 |
+
"""
|
263 |
+
Returns the context related to a given query
|
264 |
+
"""
|
265 |
+
documents, coordinates = self._get_context(doc_id, query, context_size)
|
266 |
|
267 |
context_as_text = [doc.page_content for doc in documents]
|
268 |
+
return context_as_text, coordinates
|
269 |
+
|
270 |
+
def query_storage_and_embeddings(self, query: str, doc_id, context_size=4) -> List[Document]:
|
271 |
+
"""
|
272 |
+
Returns both the context and the embedding information from a given query
|
273 |
+
"""
|
274 |
+
db = self.data_storage.embeddings_dict[doc_id]
|
275 |
+
retriever = db.as_retriever(search_kwargs={"k": context_size}, search_type="similarity_with_embeddings")
|
276 |
+
relevant_documents = retriever.get_relevant_documents(query)
|
277 |
+
|
278 |
+
return relevant_documents
|
279 |
+
|
280 |
+
def analyse_query(self, query, doc_id, context_size=4):
|
281 |
+
db = self.data_storage.embeddings_dict[doc_id]
|
282 |
+
# retriever = db.as_retriever(
|
283 |
+
# search_kwargs={"k": context_size, 'score_threshold': 0.0},
|
284 |
+
# search_type="similarity_score_threshold"
|
285 |
+
# )
|
286 |
+
retriever = db.as_retriever(search_kwargs={"k": context_size}, search_type="similarity_with_embeddings")
|
287 |
+
relevant_documents = retriever.get_relevant_documents(query)
|
288 |
+
relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
|
289 |
+
for doc in
|
290 |
+
relevant_documents]
|
291 |
+
all_documents = db.get(include=['documents', 'metadatas', 'embeddings'])
|
292 |
+
# all_documents_embeddings = all_documents["embeddings"]
|
293 |
+
# query_embedding = db._embedding_function.embed_query(query)
|
294 |
+
|
295 |
+
# distance_evaluator = load_evaluator("pairwise_embedding_distance",
|
296 |
+
# embeddings=db._embedding_function,
|
297 |
+
# distance_metric=EmbeddingDistance.EUCLIDEAN)
|
298 |
+
|
299 |
+
# distance_evaluator.evaluate_string_pairs(query=query_embedding, documents="")
|
300 |
+
|
301 |
+
similarities = [doc.metadata['__similarity'] for doc in relevant_documents]
|
302 |
+
min_similarity = min(similarities)
|
303 |
+
mean_similarity = sum(similarities) / len(similarities)
|
304 |
+
coefficient = min_similarity - mean_similarity
|
305 |
+
|
306 |
+
return f"Coefficient: {coefficient}, (Min similarity {min_similarity}, Mean similarity: {mean_similarity})", relevant_document_coordinates
|
307 |
|
308 |
def _parse_json(self, response, output_parser):
|
309 |
system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \
|
|
|
326 |
|
327 |
return parsed_output
|
328 |
|
329 |
+
def _run_query(self, doc_id, query, context_size=4) -> (List[Document], list):
|
330 |
+
relevant_documents, relevant_document_coordinates = self._get_context(doc_id, query, context_size)
|
|
|
|
|
|
|
331 |
response = self.chain.run(input_documents=relevant_documents,
|
332 |
question=query)
|
333 |
|
|
|
335 |
self.memory.save_context({"input": query}, {"output": response})
|
336 |
return response, relevant_document_coordinates
|
337 |
|
338 |
+
def _get_context(self, doc_id, query, context_size=4) -> (List[Document], list):
|
339 |
+
db = self.data_storage.embeddings_dict[doc_id]
|
340 |
retriever = db.as_retriever(search_kwargs={"k": context_size})
|
341 |
relevant_documents = retriever.get_relevant_documents(query)
|
342 |
+
relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
|
343 |
+
for doc in
|
344 |
+
relevant_documents]
|
345 |
if self.memory and len(self.memory.buffer_as_messages) > 0:
|
346 |
relevant_documents.append(
|
347 |
Document(
|
348 |
page_content="""Following, the previous question and answers. Use these information only when in the question there are unspecified references:\n{}\n\n""".format(
|
349 |
self.memory.buffer_as_str))
|
350 |
)
|
351 |
+
return relevant_documents, relevant_document_coordinates
|
352 |
|
353 |
+
def get_full_context_by_document(self, doc_id):
|
354 |
+
"""
|
355 |
+
Return the full context from the document
|
356 |
+
"""
|
357 |
+
db = self.data_storage.embeddings_dict[doc_id]
|
358 |
docs = db.get()
|
359 |
return docs['documents']
|
360 |
|
361 |
def _get_context_multiquery(self, doc_id, query, context_size=4):
|
362 |
+
db = self.data_storage.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size})
|
363 |
multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm)
|
364 |
relevant_documents = multi_query_retriever.get_relevant_documents(query)
|
365 |
return relevant_documents
|
366 |
|
367 |
def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False):
|
368 |
"""
|
369 |
+
Extract text from documents using Grobid.
|
370 |
+
- if chunk_size is < 0, keeps each paragraph separately
|
371 |
+
- if chunk_size > 0, aggregate all paragraphs and split them again using an approximate chunk size
|
372 |
"""
|
373 |
if verbose:
|
374 |
print("File", pdf_file_path)
|
375 |
filename = Path(pdf_file_path).stem
|
376 |
coordinates = True # if chunk_size == -1 else False
|
377 |
+
structure = self.grobid_processor.process_structure(pdf_file_path, coordinates=coordinates)
|
378 |
|
379 |
biblio = structure['biblio']
|
380 |
biblio['filename'] = filename.replace(" ", "_")
|
|
|
408 |
|
409 |
return texts, metadatas, ids
|
410 |
|
411 |
+
def create_memory_embeddings(
|
412 |
+
self,
|
413 |
+
pdf_path,
|
414 |
+
doc_id=None,
|
415 |
+
chunk_size=500,
|
416 |
+
perc_overlap=0.1
|
417 |
+
):
|
418 |
texts, metadata, ids = self.get_text_from_document(
|
419 |
pdf_path,
|
420 |
chunk_size=chunk_size,
|
|
|
424 |
else:
|
425 |
hash = metadata[0]['hash']
|
426 |
|
427 |
+
self.data_storage.embed_document(hash, texts, metadata)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
|
429 |
return hash
|
430 |
|
431 |
+
def create_embeddings(
|
432 |
+
self,
|
433 |
+
pdfs_dir_path: Path,
|
434 |
+
chunk_size=500,
|
435 |
+
perc_overlap=0.1,
|
436 |
+
include_biblio=False
|
437 |
+
):
|
438 |
input_files = []
|
439 |
for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False):
|
440 |
for file_ in files:
|
|
|
446 |
desc="Grobid + embeddings processing"):
|
447 |
|
448 |
md5 = self.calculate_md5(input_file)
|
449 |
+
data_path = os.path.join(self.data_storage.embeddings_root_path, md5)
|
450 |
|
451 |
if os.path.exists(data_path):
|
452 |
print(data_path, "exists. Skipping it ")
|
453 |
continue
|
454 |
+
# include = ["biblio"] if include_biblio else []
|
455 |
texts, metadata, ids = self.get_text_from_document(
|
456 |
input_file,
|
457 |
chunk_size=chunk_size,
|
458 |
+
perc_overlap=perc_overlap)
|
|
|
459 |
filename = metadata[0]['filename']
|
460 |
|
461 |
vector_db_document = Chroma.from_texts(texts,
|
document_qa/grobid_processors.py
CHANGED
@@ -2,12 +2,11 @@ import re
|
|
2 |
from collections import OrderedDict
|
3 |
from html import escape
|
4 |
from pathlib import Path
|
5 |
-
from typing_extensions import deprecated
|
6 |
|
7 |
import dateparser
|
8 |
import grobid_tei_xml
|
9 |
from bs4 import BeautifulSoup
|
10 |
-
from
|
11 |
|
12 |
|
13 |
def get_span_start(type, title=None):
|
@@ -55,51 +54,6 @@ def decorate_text_with_annotations(text, spans, tag="span"):
|
|
55 |
return annotated_text
|
56 |
|
57 |
|
58 |
-
@deprecated("Use GrobidQuantitiesProcessor.process() instead")
|
59 |
-
def extract_quantities(client, x_all, column_text_index):
|
60 |
-
# relevant_items = ['magnetic field strength', 'magnetic induction', 'maximum energy product',
|
61 |
-
# "magnetic flux density", "magnetic flux"]
|
62 |
-
# property_keywords = ['coercivity', 'remanence']
|
63 |
-
|
64 |
-
output_data = []
|
65 |
-
|
66 |
-
for idx, example in tqdm(enumerate(x_all), desc="extract quantities"):
|
67 |
-
text = example[column_text_index]
|
68 |
-
spans = GrobidQuantitiesProcessor(client).process(text)
|
69 |
-
|
70 |
-
data_record = {
|
71 |
-
"id": example[0],
|
72 |
-
"filename": example[1],
|
73 |
-
"passage_id": example[2],
|
74 |
-
"text": text,
|
75 |
-
"spans": spans
|
76 |
-
}
|
77 |
-
|
78 |
-
output_data.append(data_record)
|
79 |
-
|
80 |
-
return output_data
|
81 |
-
|
82 |
-
|
83 |
-
@deprecated("Use GrobidMaterialsProcessor.process() instead")
|
84 |
-
def extract_materials(client, x_all, column_text_index):
|
85 |
-
output_data = []
|
86 |
-
|
87 |
-
for idx, example in tqdm(enumerate(x_all), desc="extract materials"):
|
88 |
-
text = example[column_text_index]
|
89 |
-
spans = GrobidMaterialsProcessor(client).process(text)
|
90 |
-
data_record = {
|
91 |
-
"id": example[0],
|
92 |
-
"filename": example[1],
|
93 |
-
"passage_id": example[2],
|
94 |
-
"text": text,
|
95 |
-
"spans": spans
|
96 |
-
}
|
97 |
-
|
98 |
-
output_data.append(data_record)
|
99 |
-
|
100 |
-
return output_data
|
101 |
-
|
102 |
-
|
103 |
def get_parsed_value_type(quantity):
|
104 |
if 'parsedValue' in quantity and 'structure' in quantity['parsedValue']:
|
105 |
return quantity['parsedValue']['structure']['type']
|
@@ -130,11 +84,19 @@ class BaseProcessor(object):
|
|
130 |
|
131 |
|
132 |
class GrobidProcessor(BaseProcessor):
|
133 |
-
def __init__(self,
|
134 |
# super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
self.grobid_client = grobid_client
|
136 |
|
137 |
-
def
|
138 |
pdf_file, status, text = self.grobid_client.process_pdf("processFulltextDocument",
|
139 |
input_path,
|
140 |
consolidate_header=True,
|
@@ -153,6 +115,15 @@ class GrobidProcessor(BaseProcessor):
|
|
153 |
|
154 |
return document_object
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
def parse_grobid_xml(self, text, coordinates=False):
|
157 |
output_data = OrderedDict()
|
158 |
|
@@ -212,6 +183,7 @@ class GrobidProcessor(BaseProcessor):
|
|
212 |
})
|
213 |
|
214 |
text_blocks_body = get_xml_nodes_body(soup, verbose=False, use_paragraphs=True)
|
|
|
215 |
|
216 |
use_paragraphs = True
|
217 |
if not use_paragraphs:
|
@@ -287,7 +259,7 @@ class GrobidQuantitiesProcessor(BaseProcessor):
|
|
287 |
def __init__(self, grobid_quantities_client):
|
288 |
self.grobid_quantities_client = grobid_quantities_client
|
289 |
|
290 |
-
def process(self, text):
|
291 |
status, result = self.grobid_quantities_client.process_text(text.strip())
|
292 |
|
293 |
if status != 200:
|
@@ -555,11 +527,12 @@ class GrobidMaterialsProcessor(BaseProcessor):
|
|
555 |
return materials
|
556 |
|
557 |
|
558 |
-
class GrobidAggregationProcessor(
|
559 |
-
def __init__(self,
|
560 |
-
|
561 |
-
|
562 |
-
|
|
|
563 |
|
564 |
def process_single_text(self, text):
|
565 |
extracted_quantities_spans = self.process_properties(text)
|
@@ -569,10 +542,16 @@ class GrobidAggregationProcessor(GrobidProcessor, GrobidQuantitiesProcessor, Gro
|
|
569 |
return entities
|
570 |
|
571 |
def process_properties(self, text):
|
572 |
-
|
|
|
|
|
|
|
573 |
|
574 |
def process_materials(self, text):
|
575 |
-
|
|
|
|
|
|
|
576 |
|
577 |
@staticmethod
|
578 |
def box_to_dict(box, color=None, type=None):
|
@@ -724,11 +703,11 @@ class XmlProcessor(BaseProcessor):
|
|
724 |
|
725 |
# def process_single(self, input_file):
|
726 |
# doc = self.process_structure(input_file)
|
727 |
-
#
|
728 |
# for paragraph in doc['passages']:
|
729 |
# entities = self.process_single_text(paragraph['text'])
|
730 |
# paragraph['spans'] = entities
|
731 |
-
#
|
732 |
# return doc
|
733 |
|
734 |
def process(self, text):
|
@@ -822,6 +801,20 @@ def get_xml_nodes_body(soup: object, use_paragraphs: bool = True, verbose: bool
|
|
822 |
return nodes
|
823 |
|
824 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
825 |
def get_xml_nodes_figures(soup: object, verbose: bool = False) -> list:
|
826 |
children = []
|
827 |
for child in soup.TEI.children:
|
|
|
2 |
from collections import OrderedDict
|
3 |
from html import escape
|
4 |
from pathlib import Path
|
|
|
5 |
|
6 |
import dateparser
|
7 |
import grobid_tei_xml
|
8 |
from bs4 import BeautifulSoup
|
9 |
+
from grobid_client.grobid_client import GrobidClient
|
10 |
|
11 |
|
12 |
def get_span_start(type, title=None):
|
|
|
54 |
return annotated_text
|
55 |
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def get_parsed_value_type(quantity):
|
58 |
if 'parsedValue' in quantity and 'structure' in quantity['parsedValue']:
|
59 |
return quantity['parsedValue']['structure']['type']
|
|
|
84 |
|
85 |
|
86 |
class GrobidProcessor(BaseProcessor):
|
87 |
+
def __init__(self, grobid_url, ping_server=True):
|
88 |
# super().__init__()
|
89 |
+
grobid_client = GrobidClient(
|
90 |
+
grobid_server=grobid_url,
|
91 |
+
batch_size=5,
|
92 |
+
coordinates=["p", "title", "persName"],
|
93 |
+
sleep_time=5,
|
94 |
+
timeout=60,
|
95 |
+
check_server=ping_server
|
96 |
+
)
|
97 |
self.grobid_client = grobid_client
|
98 |
|
99 |
+
def process_structure(self, input_path, coordinates=False):
|
100 |
pdf_file, status, text = self.grobid_client.process_pdf("processFulltextDocument",
|
101 |
input_path,
|
102 |
consolidate_header=True,
|
|
|
115 |
|
116 |
return document_object
|
117 |
|
118 |
+
def process_single(self, input_file):
|
119 |
+
doc = self.process_structure(input_file)
|
120 |
+
|
121 |
+
for paragraph in doc['passages']:
|
122 |
+
entities = self.process_single_text(paragraph['text'])
|
123 |
+
paragraph['spans'] = entities
|
124 |
+
|
125 |
+
return doc
|
126 |
+
|
127 |
def parse_grobid_xml(self, text, coordinates=False):
|
128 |
output_data = OrderedDict()
|
129 |
|
|
|
183 |
})
|
184 |
|
185 |
text_blocks_body = get_xml_nodes_body(soup, verbose=False, use_paragraphs=True)
|
186 |
+
text_blocks_body.extend(get_xml_nodes_back(soup, verbose=False, use_paragraphs=True))
|
187 |
|
188 |
use_paragraphs = True
|
189 |
if not use_paragraphs:
|
|
|
259 |
def __init__(self, grobid_quantities_client):
|
260 |
self.grobid_quantities_client = grobid_quantities_client
|
261 |
|
262 |
+
def process(self, text) -> list:
|
263 |
status, result = self.grobid_quantities_client.process_text(text.strip())
|
264 |
|
265 |
if status != 200:
|
|
|
527 |
return materials
|
528 |
|
529 |
|
530 |
+
class GrobidAggregationProcessor(GrobidQuantitiesProcessor, GrobidMaterialsProcessor):
|
531 |
+
def __init__(self, grobid_quantities_client=None, grobid_superconductors_client=None):
|
532 |
+
if grobid_quantities_client:
|
533 |
+
self.gqp = GrobidQuantitiesProcessor(grobid_quantities_client)
|
534 |
+
if grobid_superconductors_client:
|
535 |
+
self.gmp = GrobidMaterialsProcessor(grobid_superconductors_client)
|
536 |
|
537 |
def process_single_text(self, text):
|
538 |
extracted_quantities_spans = self.process_properties(text)
|
|
|
542 |
return entities
|
543 |
|
544 |
def process_properties(self, text):
|
545 |
+
if self.gqp:
|
546 |
+
return self.gqp.process(text)
|
547 |
+
else:
|
548 |
+
return []
|
549 |
|
550 |
def process_materials(self, text):
|
551 |
+
if self.gmp:
|
552 |
+
return self.gmp.process(text)
|
553 |
+
else:
|
554 |
+
return []
|
555 |
|
556 |
@staticmethod
|
557 |
def box_to_dict(box, color=None, type=None):
|
|
|
703 |
|
704 |
# def process_single(self, input_file):
|
705 |
# doc = self.process_structure(input_file)
|
706 |
+
#
|
707 |
# for paragraph in doc['passages']:
|
708 |
# entities = self.process_single_text(paragraph['text'])
|
709 |
# paragraph['spans'] = entities
|
710 |
+
#
|
711 |
# return doc
|
712 |
|
713 |
def process(self, text):
|
|
|
801 |
return nodes
|
802 |
|
803 |
|
804 |
+
def get_xml_nodes_back(soup: object, use_paragraphs: bool = True, verbose: bool = False) -> list:
|
805 |
+
nodes = []
|
806 |
+
tag_name = "p" if use_paragraphs else "s"
|
807 |
+
for child in soup.TEI.children:
|
808 |
+
if child.name == 'text':
|
809 |
+
nodes.extend(
|
810 |
+
[subsubchild for subchild in child.find_all("back") for subsubchild in subchild.find_all(tag_name)])
|
811 |
+
|
812 |
+
if verbose:
|
813 |
+
print(str(nodes))
|
814 |
+
|
815 |
+
return nodes
|
816 |
+
|
817 |
+
|
818 |
def get_xml_nodes_figures(soup: object, verbose: bool = False) -> list:
|
819 |
children = []
|
820 |
for child in soup.TEI.children:
|
document_qa/langchain.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Any, Optional, List, Dict, Tuple, ClassVar, Collection
|
3 |
+
|
4 |
+
from langchain.schema import Document
|
5 |
+
from langchain_community.vectorstores.chroma import Chroma, DEFAULT_K
|
6 |
+
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
7 |
+
from langchain_core.utils import xor_args
|
8 |
+
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever
|
9 |
+
|
10 |
+
|
11 |
+
class AdvancedVectorStoreRetriever(VectorStoreRetriever):
|
12 |
+
allowed_search_types: ClassVar[Collection[str]] = (
|
13 |
+
"similarity",
|
14 |
+
"similarity_score_threshold",
|
15 |
+
"mmr",
|
16 |
+
"similarity_with_embeddings"
|
17 |
+
)
|
18 |
+
|
19 |
+
def _get_relevant_documents(
|
20 |
+
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
21 |
+
) -> List[Document]:
|
22 |
+
|
23 |
+
if self.search_type == "similarity_with_embeddings":
|
24 |
+
docs_scores_and_embeddings = (
|
25 |
+
self.vectorstore.advanced_similarity_search(
|
26 |
+
query, **self.search_kwargs
|
27 |
+
)
|
28 |
+
)
|
29 |
+
|
30 |
+
for doc, score, embeddings in docs_scores_and_embeddings:
|
31 |
+
if '__embeddings' not in doc.metadata.keys():
|
32 |
+
doc.metadata['__embeddings'] = embeddings
|
33 |
+
if '__similarity' not in doc.metadata.keys():
|
34 |
+
doc.metadata['__similarity'] = score
|
35 |
+
|
36 |
+
docs = [doc for doc, _, _ in docs_scores_and_embeddings]
|
37 |
+
elif self.search_type == "similarity_score_threshold":
|
38 |
+
docs_and_similarities = (
|
39 |
+
self.vectorstore.similarity_search_with_relevance_scores(
|
40 |
+
query, **self.search_kwargs
|
41 |
+
)
|
42 |
+
)
|
43 |
+
for doc, similarity in docs_and_similarities:
|
44 |
+
if '__similarity' not in doc.metadata.keys():
|
45 |
+
doc.metadata['__similarity'] = similarity
|
46 |
+
|
47 |
+
docs = [doc for doc, _ in docs_and_similarities]
|
48 |
+
else:
|
49 |
+
docs = super()._get_relevant_documents(query, run_manager=run_manager)
|
50 |
+
|
51 |
+
return docs
|
52 |
+
|
53 |
+
|
54 |
+
class AdvancedVectorStore(VectorStore):
|
55 |
+
def as_retriever(self, **kwargs: Any) -> AdvancedVectorStoreRetriever:
|
56 |
+
tags = kwargs.pop("tags", None) or []
|
57 |
+
tags.extend(self._get_retriever_tags())
|
58 |
+
return AdvancedVectorStoreRetriever(vectorstore=self, **kwargs, tags=tags)
|
59 |
+
|
60 |
+
|
61 |
+
class ChromaAdvancedRetrieval(Chroma, AdvancedVectorStore):
|
62 |
+
def __init__(self, **kwargs):
|
63 |
+
super().__init__(**kwargs)
|
64 |
+
|
65 |
+
@xor_args(("query_texts", "query_embeddings"))
|
66 |
+
def __query_collection(
|
67 |
+
self,
|
68 |
+
query_texts: Optional[List[str]] = None,
|
69 |
+
query_embeddings: Optional[List[List[float]]] = None,
|
70 |
+
n_results: int = 4,
|
71 |
+
where: Optional[Dict[str, str]] = None,
|
72 |
+
where_document: Optional[Dict[str, str]] = None,
|
73 |
+
**kwargs: Any,
|
74 |
+
) -> List[Document]:
|
75 |
+
"""Query the chroma collection."""
|
76 |
+
try:
|
77 |
+
import chromadb # noqa: F401
|
78 |
+
except ImportError:
|
79 |
+
raise ValueError(
|
80 |
+
"Could not import chromadb python package. "
|
81 |
+
"Please install it with `pip install chromadb`."
|
82 |
+
)
|
83 |
+
return self._collection.query(
|
84 |
+
query_texts=query_texts,
|
85 |
+
query_embeddings=query_embeddings,
|
86 |
+
n_results=n_results,
|
87 |
+
where=where,
|
88 |
+
where_document=where_document,
|
89 |
+
**kwargs,
|
90 |
+
)
|
91 |
+
|
92 |
+
def advanced_similarity_search(
|
93 |
+
self,
|
94 |
+
query: str,
|
95 |
+
k: int = DEFAULT_K,
|
96 |
+
filter: Optional[Dict[str, str]] = None,
|
97 |
+
**kwargs: Any,
|
98 |
+
) -> [List[Document], float, List[float]]:
|
99 |
+
docs_scores_and_embeddings = self.similarity_search_with_scores_and_embeddings(query, k, filter=filter)
|
100 |
+
return docs_scores_and_embeddings
|
101 |
+
|
102 |
+
def similarity_search_with_scores_and_embeddings(
|
103 |
+
self,
|
104 |
+
query: str,
|
105 |
+
k: int = DEFAULT_K,
|
106 |
+
filter: Optional[Dict[str, str]] = None,
|
107 |
+
where_document: Optional[Dict[str, str]] = None,
|
108 |
+
**kwargs: Any,
|
109 |
+
) -> List[Tuple[Document, float, List[float]]]:
|
110 |
+
|
111 |
+
if self._embedding_function is None:
|
112 |
+
results = self.__query_collection(
|
113 |
+
query_texts=[query],
|
114 |
+
n_results=k,
|
115 |
+
where=filter,
|
116 |
+
where_document=where_document,
|
117 |
+
include=['metadatas', 'documents', 'embeddings', 'distances']
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
query_embedding = self._embedding_function.embed_query(query)
|
121 |
+
results = self.__query_collection(
|
122 |
+
query_embeddings=[query_embedding],
|
123 |
+
n_results=k,
|
124 |
+
where=filter,
|
125 |
+
where_document=where_document,
|
126 |
+
include=['metadatas', 'documents', 'embeddings', 'distances']
|
127 |
+
)
|
128 |
+
|
129 |
+
return _results_to_docs_scores_and_embeddings(results)
|
130 |
+
|
131 |
+
|
132 |
+
def _results_to_docs_scores_and_embeddings(results: Any) -> List[Tuple[Document, float, List[float]]]:
|
133 |
+
return [
|
134 |
+
(Document(page_content=result[0], metadata=result[1] or {}), result[2], result[3])
|
135 |
+
for result in zip(
|
136 |
+
results["documents"][0],
|
137 |
+
results["metadatas"][0],
|
138 |
+
results["distances"][0],
|
139 |
+
results["embeddings"][0],
|
140 |
+
)
|
141 |
+
]
|
client.py → document_qa/ner_client_generic.py
RENAMED
@@ -1,3 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
""" Generic API Client """
|
2 |
from copy import deepcopy
|
3 |
import json
|
@@ -121,7 +133,7 @@ class ApiClient(object):
|
|
121 |
params = deepcopy(params) or {}
|
122 |
data = data or {}
|
123 |
files = files or {}
|
124 |
-
#if self.username is not None and self.api_key is not None:
|
125 |
# params.update(self.get_credentials())
|
126 |
r = requests.request(
|
127 |
method,
|
@@ -223,3 +235,227 @@ class ApiClient(object):
|
|
223 |
params={'format': 'json'},
|
224 |
**kwargs
|
225 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
import yaml
|
5 |
+
|
6 |
+
'''
|
7 |
+
This client is a generic client for any Grobid application and sub-modules.
|
8 |
+
At the moment, it supports only single document processing.
|
9 |
+
|
10 |
+
Source: https://github.com/kermitt2/grobid-client-python
|
11 |
+
'''
|
12 |
+
|
13 |
""" Generic API Client """
|
14 |
from copy import deepcopy
|
15 |
import json
|
|
|
133 |
params = deepcopy(params) or {}
|
134 |
data = data or {}
|
135 |
files = files or {}
|
136 |
+
# if self.username is not None and self.api_key is not None:
|
137 |
# params.update(self.get_credentials())
|
138 |
r = requests.request(
|
139 |
method,
|
|
|
235 |
params={'format': 'json'},
|
236 |
**kwargs
|
237 |
)
|
238 |
+
|
239 |
+
|
240 |
+
class NERClientGeneric(ApiClient):
|
241 |
+
|
242 |
+
def __init__(self, config_path=None, ping=False):
|
243 |
+
self.config = None
|
244 |
+
if config_path is not None:
|
245 |
+
self.config = self._load_yaml_config_from_file(path=config_path)
|
246 |
+
super().__init__(self.config['grobid']['server'])
|
247 |
+
|
248 |
+
if ping:
|
249 |
+
result = self.ping_service()
|
250 |
+
if not result:
|
251 |
+
raise Exception("Grobid is down.")
|
252 |
+
|
253 |
+
os.environ['NO_PROXY'] = "nims.go.jp"
|
254 |
+
|
255 |
+
@staticmethod
|
256 |
+
def _load_json_config_from_file(path='./config.json'):
|
257 |
+
"""
|
258 |
+
Load the json configuration
|
259 |
+
"""
|
260 |
+
config = {}
|
261 |
+
with open(path, 'r') as fp:
|
262 |
+
config = json.load(fp)
|
263 |
+
|
264 |
+
return config
|
265 |
+
|
266 |
+
@staticmethod
|
267 |
+
def _load_yaml_config_from_file(path='./config.yaml'):
|
268 |
+
"""
|
269 |
+
Load the YAML configuration
|
270 |
+
"""
|
271 |
+
config = {}
|
272 |
+
try:
|
273 |
+
with open(path, 'r') as the_file:
|
274 |
+
raw_configuration = the_file.read()
|
275 |
+
|
276 |
+
config = yaml.safe_load(raw_configuration)
|
277 |
+
except Exception as e:
|
278 |
+
print("Configuration could not be loaded: ", str(e))
|
279 |
+
exit(1)
|
280 |
+
|
281 |
+
return config
|
282 |
+
|
283 |
+
def set_config(self, config, ping=False):
|
284 |
+
self.config = config
|
285 |
+
if ping:
|
286 |
+
try:
|
287 |
+
result = self.ping_service()
|
288 |
+
if not result:
|
289 |
+
raise Exception("Grobid is down.")
|
290 |
+
except Exception as e:
|
291 |
+
raise Exception("Grobid is down or other problems were encountered. ", e)
|
292 |
+
|
293 |
+
def ping_service(self):
|
294 |
+
# test if the server is up and running...
|
295 |
+
ping_url = self.get_url("ping")
|
296 |
+
|
297 |
+
r = requests.get(ping_url)
|
298 |
+
status = r.status_code
|
299 |
+
|
300 |
+
if status != 200:
|
301 |
+
print('GROBID server does not appear up and running ' + str(status))
|
302 |
+
return False
|
303 |
+
else:
|
304 |
+
print("GROBID server is up and running")
|
305 |
+
return True
|
306 |
+
|
307 |
+
def get_url(self, action):
|
308 |
+
grobid_config = self.config['grobid']
|
309 |
+
base_url = grobid_config['server']
|
310 |
+
action_url = base_url + grobid_config['url_mapping'][action]
|
311 |
+
|
312 |
+
return action_url
|
313 |
+
|
314 |
+
def process_texts(self, input, method_name='superconductors', params={}, headers={"Accept": "application/json"}):
|
315 |
+
|
316 |
+
files = {
|
317 |
+
'texts': input
|
318 |
+
}
|
319 |
+
|
320 |
+
the_url = self.get_url(method_name)
|
321 |
+
params, the_url = self.get_params_from_url(the_url)
|
322 |
+
|
323 |
+
res, status = self.post(
|
324 |
+
url=the_url,
|
325 |
+
files=files,
|
326 |
+
data=params,
|
327 |
+
headers=headers
|
328 |
+
)
|
329 |
+
|
330 |
+
if status == 503:
|
331 |
+
time.sleep(self.config['sleep_time'])
|
332 |
+
return self.process_texts(input, method_name, params, headers)
|
333 |
+
elif status != 200:
|
334 |
+
print('Processing failed with error ' + str(status))
|
335 |
+
return status, None
|
336 |
+
else:
|
337 |
+
return status, json.loads(res.text)
|
338 |
+
|
339 |
+
def process_text(self, input, method_name='superconductors', params={}, headers={"Accept": "application/json"}):
|
340 |
+
|
341 |
+
files = {
|
342 |
+
'text': input
|
343 |
+
}
|
344 |
+
|
345 |
+
the_url = self.get_url(method_name)
|
346 |
+
params, the_url = self.get_params_from_url(the_url)
|
347 |
+
|
348 |
+
res, status = self.post(
|
349 |
+
url=the_url,
|
350 |
+
files=files,
|
351 |
+
data=params,
|
352 |
+
headers=headers
|
353 |
+
)
|
354 |
+
|
355 |
+
if status == 503:
|
356 |
+
time.sleep(self.config['sleep_time'])
|
357 |
+
return self.process_text(input, method_name, params, headers)
|
358 |
+
elif status != 200:
|
359 |
+
print('Processing failed with error ' + str(status))
|
360 |
+
return status, None
|
361 |
+
else:
|
362 |
+
return status, json.loads(res.text)
|
363 |
+
|
364 |
+
def process_pdf(self,
|
365 |
+
form_data: dict,
|
366 |
+
method_name='superconductors',
|
367 |
+
params={},
|
368 |
+
headers={"Accept": "application/json"}
|
369 |
+
):
|
370 |
+
|
371 |
+
the_url = self.get_url(method_name)
|
372 |
+
params, the_url = self.get_params_from_url(the_url)
|
373 |
+
|
374 |
+
res, status = self.post(
|
375 |
+
url=the_url,
|
376 |
+
files=form_data,
|
377 |
+
data=params,
|
378 |
+
headers=headers
|
379 |
+
)
|
380 |
+
|
381 |
+
if status == 503:
|
382 |
+
time.sleep(self.config['sleep_time'])
|
383 |
+
return self.process_text(input, method_name, params, headers)
|
384 |
+
elif status != 200:
|
385 |
+
print('Processing failed with error ' + str(status))
|
386 |
+
else:
|
387 |
+
return res.text
|
388 |
+
|
389 |
+
def process_pdfs(self, pdf_files, params={}):
|
390 |
+
pass
|
391 |
+
|
392 |
+
def process_pdf(
|
393 |
+
self,
|
394 |
+
pdf_file,
|
395 |
+
method_name,
|
396 |
+
params={},
|
397 |
+
headers={"Accept": "application/json"},
|
398 |
+
verbose=False,
|
399 |
+
retry=None
|
400 |
+
):
|
401 |
+
|
402 |
+
files = {
|
403 |
+
'input': (
|
404 |
+
pdf_file,
|
405 |
+
open(pdf_file, 'rb'),
|
406 |
+
'application/pdf',
|
407 |
+
{'Expires': '0'}
|
408 |
+
)
|
409 |
+
}
|
410 |
+
|
411 |
+
the_url = self.get_url(method_name)
|
412 |
+
|
413 |
+
params, the_url = self.get_params_from_url(the_url)
|
414 |
+
|
415 |
+
res, status = self.post(
|
416 |
+
url=the_url,
|
417 |
+
files=files,
|
418 |
+
data=params,
|
419 |
+
headers=headers
|
420 |
+
)
|
421 |
+
|
422 |
+
if status == 503 or status == 429:
|
423 |
+
if retry is None:
|
424 |
+
retry = self.config['max_retry'] - 1
|
425 |
+
else:
|
426 |
+
if retry - 1 == 0:
|
427 |
+
if verbose:
|
428 |
+
print("re-try exhausted. Aborting request")
|
429 |
+
return None, status
|
430 |
+
else:
|
431 |
+
retry -= 1
|
432 |
+
|
433 |
+
sleep_time = self.config['sleep_time']
|
434 |
+
if verbose:
|
435 |
+
print("Server is saturated, waiting", sleep_time, "seconds and trying again. ")
|
436 |
+
time.sleep(sleep_time)
|
437 |
+
return self.process_pdf(pdf_file, method_name, params, headers, verbose=verbose, retry=retry)
|
438 |
+
elif status != 200:
|
439 |
+
desc = None
|
440 |
+
if res.content:
|
441 |
+
c = json.loads(res.text)
|
442 |
+
desc = c['description'] if 'description' in c else None
|
443 |
+
return desc, status
|
444 |
+
elif status == 204:
|
445 |
+
# print('No content returned. Moving on. ')
|
446 |
+
return None, status
|
447 |
+
else:
|
448 |
+
return res.text, status
|
449 |
+
|
450 |
+
def get_params_from_url(self, the_url):
|
451 |
+
"""
|
452 |
+
This method is used to pass to the URL predefined parameters, which are added in the URL format
|
453 |
+
"""
|
454 |
+
params = {}
|
455 |
+
if "?" in the_url:
|
456 |
+
split = the_url.split("?")
|
457 |
+
the_url = split[0]
|
458 |
+
params = split[1]
|
459 |
+
|
460 |
+
params = {param.split("=")[0]: param.split("=")[1] for param in params.split("&")}
|
461 |
+
return params, the_url
|
grobid_client_generic.py
DELETED
@@ -1,264 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import time
|
4 |
-
|
5 |
-
import requests
|
6 |
-
import yaml
|
7 |
-
|
8 |
-
from client import ApiClient
|
9 |
-
|
10 |
-
'''
|
11 |
-
This client is a generic client for any Grobid application and sub-modules.
|
12 |
-
At the moment, it supports only single document processing.
|
13 |
-
|
14 |
-
Source: https://github.com/kermitt2/grobid-client-python
|
15 |
-
'''
|
16 |
-
|
17 |
-
|
18 |
-
class GrobidClientGeneric(ApiClient):
|
19 |
-
|
20 |
-
def __init__(self, config_path=None, ping=False):
|
21 |
-
self.config = None
|
22 |
-
if config_path is not None:
|
23 |
-
self.config = self.load_yaml_config_from_file(path=config_path)
|
24 |
-
super().__init__(self.config['grobid']['server'])
|
25 |
-
|
26 |
-
if ping:
|
27 |
-
result = self.ping_grobid()
|
28 |
-
if not result:
|
29 |
-
raise Exception("Grobid is down.")
|
30 |
-
|
31 |
-
os.environ['NO_PROXY'] = "nims.go.jp"
|
32 |
-
|
33 |
-
@staticmethod
|
34 |
-
def load_json_config_from_file(self, path='./config.json', ping=False):
|
35 |
-
"""
|
36 |
-
Load the json configuration
|
37 |
-
"""
|
38 |
-
config = {}
|
39 |
-
with open(path, 'r') as fp:
|
40 |
-
config = json.load(fp)
|
41 |
-
|
42 |
-
if ping:
|
43 |
-
result = self.ping_grobid()
|
44 |
-
if not result:
|
45 |
-
raise Exception("Grobid is down.")
|
46 |
-
|
47 |
-
return config
|
48 |
-
|
49 |
-
def load_yaml_config_from_file(self, path='./config.yaml'):
|
50 |
-
"""
|
51 |
-
Load the YAML configuration
|
52 |
-
"""
|
53 |
-
config = {}
|
54 |
-
try:
|
55 |
-
with open(path, 'r') as the_file:
|
56 |
-
raw_configuration = the_file.read()
|
57 |
-
|
58 |
-
config = yaml.safe_load(raw_configuration)
|
59 |
-
except Exception as e:
|
60 |
-
print("Configuration could not be loaded: ", str(e))
|
61 |
-
exit(1)
|
62 |
-
|
63 |
-
return config
|
64 |
-
|
65 |
-
def set_config(self, config, ping=False):
|
66 |
-
self.config = config
|
67 |
-
if ping:
|
68 |
-
try:
|
69 |
-
result = self.ping_grobid()
|
70 |
-
if not result:
|
71 |
-
raise Exception("Grobid is down.")
|
72 |
-
except Exception as e:
|
73 |
-
raise Exception("Grobid is down or other problems were encountered. ", e)
|
74 |
-
|
75 |
-
def ping_grobid(self):
|
76 |
-
# test if the server is up and running...
|
77 |
-
ping_url = self.get_grobid_url("ping")
|
78 |
-
|
79 |
-
r = requests.get(ping_url)
|
80 |
-
status = r.status_code
|
81 |
-
|
82 |
-
if status != 200:
|
83 |
-
print('GROBID server does not appear up and running ' + str(status))
|
84 |
-
return False
|
85 |
-
else:
|
86 |
-
print("GROBID server is up and running")
|
87 |
-
return True
|
88 |
-
|
89 |
-
def get_grobid_url(self, action):
|
90 |
-
grobid_config = self.config['grobid']
|
91 |
-
base_url = grobid_config['server']
|
92 |
-
action_url = base_url + grobid_config['url_mapping'][action]
|
93 |
-
|
94 |
-
return action_url
|
95 |
-
|
96 |
-
def process_texts(self, input, method_name='superconductors', params={}, headers={"Accept": "application/json"}):
|
97 |
-
|
98 |
-
files = {
|
99 |
-
'texts': input
|
100 |
-
}
|
101 |
-
|
102 |
-
the_url = self.get_grobid_url(method_name)
|
103 |
-
params, the_url = self.get_params_from_url(the_url)
|
104 |
-
|
105 |
-
res, status = self.post(
|
106 |
-
url=the_url,
|
107 |
-
files=files,
|
108 |
-
data=params,
|
109 |
-
headers=headers
|
110 |
-
)
|
111 |
-
|
112 |
-
if status == 503:
|
113 |
-
time.sleep(self.config['sleep_time'])
|
114 |
-
return self.process_texts(input, method_name, params, headers)
|
115 |
-
elif status != 200:
|
116 |
-
print('Processing failed with error ' + str(status))
|
117 |
-
return status, None
|
118 |
-
else:
|
119 |
-
return status, json.loads(res.text)
|
120 |
-
|
121 |
-
def process_text(self, input, method_name='superconductors', params={}, headers={"Accept": "application/json"}):
|
122 |
-
|
123 |
-
files = {
|
124 |
-
'text': input
|
125 |
-
}
|
126 |
-
|
127 |
-
the_url = self.get_grobid_url(method_name)
|
128 |
-
params, the_url = self.get_params_from_url(the_url)
|
129 |
-
|
130 |
-
res, status = self.post(
|
131 |
-
url=the_url,
|
132 |
-
files=files,
|
133 |
-
data=params,
|
134 |
-
headers=headers
|
135 |
-
)
|
136 |
-
|
137 |
-
if status == 503:
|
138 |
-
time.sleep(self.config['sleep_time'])
|
139 |
-
return self.process_text(input, method_name, params, headers)
|
140 |
-
elif status != 200:
|
141 |
-
print('Processing failed with error ' + str(status))
|
142 |
-
return status, None
|
143 |
-
else:
|
144 |
-
return status, json.loads(res.text)
|
145 |
-
|
146 |
-
def process(self, form_data: dict, method_name='superconductors', params={}, headers={"Accept": "application/json"}):
|
147 |
-
|
148 |
-
the_url = self.get_grobid_url(method_name)
|
149 |
-
params, the_url = self.get_params_from_url(the_url)
|
150 |
-
|
151 |
-
res, status = self.post(
|
152 |
-
url=the_url,
|
153 |
-
files=form_data,
|
154 |
-
data=params,
|
155 |
-
headers=headers
|
156 |
-
)
|
157 |
-
|
158 |
-
if status == 503:
|
159 |
-
time.sleep(self.config['sleep_time'])
|
160 |
-
return self.process_text(input, method_name, params, headers)
|
161 |
-
elif status != 200:
|
162 |
-
print('Processing failed with error ' + str(status))
|
163 |
-
else:
|
164 |
-
return res.text
|
165 |
-
|
166 |
-
def process_pdf_batch(self, pdf_files, params={}):
|
167 |
-
pass
|
168 |
-
|
169 |
-
def process_pdf(self, pdf_file, method_name, params={}, headers={"Accept": "application/json"}, verbose=False,
|
170 |
-
retry=None):
|
171 |
-
|
172 |
-
files = {
|
173 |
-
'input': (
|
174 |
-
pdf_file,
|
175 |
-
open(pdf_file, 'rb'),
|
176 |
-
'application/pdf',
|
177 |
-
{'Expires': '0'}
|
178 |
-
)
|
179 |
-
}
|
180 |
-
|
181 |
-
the_url = self.get_grobid_url(method_name)
|
182 |
-
|
183 |
-
params, the_url = self.get_params_from_url(the_url)
|
184 |
-
|
185 |
-
res, status = self.post(
|
186 |
-
url=the_url,
|
187 |
-
files=files,
|
188 |
-
data=params,
|
189 |
-
headers=headers
|
190 |
-
)
|
191 |
-
|
192 |
-
if status == 503 or status == 429:
|
193 |
-
if retry is None:
|
194 |
-
retry = self.config['max_retry'] - 1
|
195 |
-
else:
|
196 |
-
if retry - 1 == 0:
|
197 |
-
if verbose:
|
198 |
-
print("re-try exhausted. Aborting request")
|
199 |
-
return None, status
|
200 |
-
else:
|
201 |
-
retry -= 1
|
202 |
-
|
203 |
-
sleep_time = self.config['sleep_time']
|
204 |
-
if verbose:
|
205 |
-
print("Server is saturated, waiting", sleep_time, "seconds and trying again. ")
|
206 |
-
time.sleep(sleep_time)
|
207 |
-
return self.process_pdf(pdf_file, method_name, params, headers, verbose=verbose, retry=retry)
|
208 |
-
elif status != 200:
|
209 |
-
desc = None
|
210 |
-
if res.content:
|
211 |
-
c = json.loads(res.text)
|
212 |
-
desc = c['description'] if 'description' in c else None
|
213 |
-
return desc, status
|
214 |
-
elif status == 204:
|
215 |
-
# print('No content returned. Moving on. ')
|
216 |
-
return None, status
|
217 |
-
else:
|
218 |
-
return res.text, status
|
219 |
-
|
220 |
-
def get_params_from_url(self, the_url):
|
221 |
-
params = {}
|
222 |
-
if "?" in the_url:
|
223 |
-
split = the_url.split("?")
|
224 |
-
the_url = split[0]
|
225 |
-
params = split[1]
|
226 |
-
|
227 |
-
params = {param.split("=")[0]: param.split("=")[1] for param in params.split("&")}
|
228 |
-
return params, the_url
|
229 |
-
|
230 |
-
def process_json(self, text, method_name="processJson", params={}, headers={"Accept": "application/json"},
|
231 |
-
verbose=False):
|
232 |
-
files = {
|
233 |
-
'input': (
|
234 |
-
None,
|
235 |
-
text,
|
236 |
-
'application/json',
|
237 |
-
{'Expires': '0'}
|
238 |
-
)
|
239 |
-
}
|
240 |
-
|
241 |
-
the_url = self.get_grobid_url(method_name)
|
242 |
-
|
243 |
-
params, the_url = self.get_params_from_url(the_url)
|
244 |
-
|
245 |
-
res, status = self.post(
|
246 |
-
url=the_url,
|
247 |
-
files=files,
|
248 |
-
data=params,
|
249 |
-
headers=headers
|
250 |
-
)
|
251 |
-
|
252 |
-
if status == 503:
|
253 |
-
time.sleep(self.config['sleep_time'])
|
254 |
-
return self.process_json(text, method_name, params, headers), status
|
255 |
-
elif status != 200:
|
256 |
-
if verbose:
|
257 |
-
print('Processing failed with error ', status)
|
258 |
-
return None, status
|
259 |
-
elif status == 204:
|
260 |
-
if verbose:
|
261 |
-
print('No content returned. Moving on. ')
|
262 |
-
return None, status
|
263 |
-
else:
|
264 |
-
return res.text, status
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -4,10 +4,10 @@ grobid-client-python==0.0.7
|
|
4 |
grobid_tei_xml==0.1.3
|
5 |
|
6 |
# Utils
|
7 |
-
tqdm==4.66.
|
8 |
pyyaml==6.0.1
|
9 |
-
pytest==
|
10 |
-
streamlit==1.
|
11 |
lxml
|
12 |
Beautifulsoup4
|
13 |
python-dotenv
|
@@ -15,13 +15,15 @@ watchdog
|
|
15 |
dateparser
|
16 |
|
17 |
# LLM
|
18 |
-
chromadb==0.4.
|
19 |
-
tiktoken==0.
|
20 |
-
openai==
|
21 |
-
langchain==0.
|
22 |
-
langchain-core==0.1.
|
23 |
typing-inspect==0.9.0
|
24 |
-
typing_extensions==4.
|
25 |
-
pydantic==2.4
|
26 |
-
sentence_transformers==2.
|
27 |
-
streamlit-pdf-viewer
|
|
|
|
|
|
4 |
grobid_tei_xml==0.1.3
|
5 |
|
6 |
# Utils
|
7 |
+
tqdm==4.66.2
|
8 |
pyyaml==6.0.1
|
9 |
+
pytest==8.1.1
|
10 |
+
streamlit==1.33.0
|
11 |
lxml
|
12 |
Beautifulsoup4
|
13 |
python-dotenv
|
|
|
15 |
dateparser
|
16 |
|
17 |
# LLM
|
18 |
+
chromadb==0.4.24
|
19 |
+
tiktoken==0.6.0
|
20 |
+
openai==1.16.2
|
21 |
+
langchain==0.1.14
|
22 |
+
langchain-core==0.1.40
|
23 |
typing-inspect==0.9.0
|
24 |
+
typing_extensions==4.11.0
|
25 |
+
pydantic==2.6.4
|
26 |
+
sentence_transformers==2.6.1
|
27 |
+
streamlit-pdf-viewer
|
28 |
+
umap-learn
|
29 |
+
plotly
|
streamlit_app.py
CHANGED
@@ -5,27 +5,41 @@ from tempfile import NamedTemporaryFile
|
|
5 |
|
6 |
import dotenv
|
7 |
from grobid_quantities.quantities import QuantitiesAPI
|
8 |
-
from langchain.llms.huggingface_hub import HuggingFaceHub
|
9 |
from langchain.memory import ConversationBufferWindowMemory
|
|
|
|
|
|
|
|
|
10 |
from streamlit_pdf_viewer import pdf_viewer
|
11 |
|
|
|
|
|
12 |
dotenv.load_dotenv(override=True)
|
13 |
|
14 |
import streamlit as st
|
15 |
-
from
|
16 |
-
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
|
17 |
-
|
18 |
-
from document_qa.document_qa_engine import DocumentQAEngine
|
19 |
from document_qa.grobid_processors import GrobidAggregationProcessor, decorate_text_with_annotations
|
20 |
-
from grobid_client_generic import GrobidClientGeneric
|
21 |
|
22 |
OPENAI_MODELS = ['gpt-3.5-turbo',
|
23 |
"gpt-4",
|
24 |
"gpt-4-1106-preview"]
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
OPEN_MODELS = {
|
27 |
-
'mistral-7b-instruct-v0.
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
}
|
30 |
|
31 |
DISABLE_MEMORY = ['zephyr-7b-beta']
|
@@ -82,6 +96,9 @@ if 'pdf' not in st.session_state:
|
|
82 |
if 'pdf_rendering' not in st.session_state:
|
83 |
st.session_state['pdf_rendering'] = None
|
84 |
|
|
|
|
|
|
|
85 |
st.set_page_config(
|
86 |
page_title="Scientific Document Insights Q/A",
|
87 |
page_icon="📝",
|
@@ -138,44 +155,57 @@ def clear_memory():
|
|
138 |
|
139 |
|
140 |
# @st.cache_resource
|
141 |
-
def init_qa(model, api_key=None):
|
142 |
## For debug add: callbacks=[PromptLayerCallbackHandler(pl_tags=["langchain", "chatgpt", "document-qa"])])
|
143 |
if model in OPENAI_MODELS:
|
|
|
|
|
|
|
144 |
st.session_state['memory'] = ConversationBufferWindowMemory(k=4)
|
145 |
if api_key:
|
146 |
chat = ChatOpenAI(model_name=model,
|
147 |
temperature=0,
|
148 |
openai_api_key=api_key,
|
149 |
frequency_penalty=0.1)
|
150 |
-
|
|
|
|
|
|
|
|
|
151 |
|
152 |
else:
|
153 |
chat = ChatOpenAI(model_name=model,
|
154 |
temperature=0,
|
155 |
frequency_penalty=0.1)
|
156 |
-
embeddings = OpenAIEmbeddings()
|
157 |
|
158 |
elif model in OPEN_MODELS:
|
159 |
-
|
|
|
|
|
|
|
160 |
repo_id=OPEN_MODELS[model],
|
161 |
-
|
|
|
|
|
162 |
)
|
163 |
embeddings = HuggingFaceEmbeddings(
|
164 |
-
model_name=
|
165 |
st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
|
166 |
else:
|
167 |
st.error("The model was not loaded properly. Try reloading. ")
|
168 |
st.stop()
|
169 |
return
|
170 |
|
171 |
-
|
|
|
172 |
|
173 |
|
174 |
@st.cache_resource
|
175 |
def init_ner():
|
176 |
quantities_client = QuantitiesAPI(os.environ['GROBID_QUANTITIES_URL'], check_server=True)
|
177 |
|
178 |
-
materials_client =
|
179 |
config_materials = {
|
180 |
'grobid': {
|
181 |
"server": os.environ['GROBID_MATERIALS_URL'],
|
@@ -190,10 +220,8 @@ def init_ner():
|
|
190 |
|
191 |
materials_client.set_config(config_materials)
|
192 |
|
193 |
-
gqa = GrobidAggregationProcessor(
|
194 |
-
|
195 |
-
grobid_superconductors_client=materials_client
|
196 |
-
)
|
197 |
return gqa
|
198 |
|
199 |
|
@@ -229,15 +257,25 @@ with st.sidebar:
|
|
229 |
"Model:",
|
230 |
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
|
231 |
index=(OPENAI_MODELS + list(OPEN_MODELS.keys())).index(
|
232 |
-
"
|
233 |
OPENAI_MODELS + list(OPEN_MODELS.keys())).index(os.environ["DEFAULT_MODEL"]),
|
234 |
placeholder="Select model",
|
235 |
help="Select the LLM model:",
|
236 |
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
|
237 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
st.markdown(
|
240 |
-
":warning: [Usage disclaimer](https://github.com/lfoppiano/document-qa
|
241 |
|
242 |
if (model in OPEN_MODELS) and model not in st.session_state['api_keys']:
|
243 |
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
@@ -254,7 +292,7 @@ with st.sidebar:
|
|
254 |
st.session_state['api_keys'][model] = api_key
|
255 |
# if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
256 |
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
|
257 |
-
st.session_state['rqa'][model] = init_qa(model)
|
258 |
|
259 |
elif model in OPENAI_MODELS and model not in st.session_state['api_keys']:
|
260 |
if 'OPENAI_API_KEY' not in os.environ:
|
@@ -268,9 +306,9 @@ with st.sidebar:
|
|
268 |
with st.spinner("Preparing environment"):
|
269 |
st.session_state['api_keys'][model] = api_key
|
270 |
if 'OPENAI_API_KEY' not in os.environ:
|
271 |
-
st.session_state['rqa'][model] = init_qa(model, api_key)
|
272 |
else:
|
273 |
-
st.session_state['rqa'][model] = init_qa(model)
|
274 |
# else:
|
275 |
# is_api_key_provided = st.session_state['api_key']
|
276 |
|
@@ -305,16 +343,24 @@ question = st.chat_input(
|
|
305 |
disabled=not uploaded_file
|
306 |
)
|
307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
with st.sidebar:
|
309 |
st.header("Settings")
|
310 |
mode = st.radio(
|
311 |
"Query mode",
|
312 |
-
("
|
313 |
disabled=not uploaded_file,
|
314 |
index=0,
|
315 |
horizontal=True,
|
|
|
316 |
help="LLM will respond the question, Embedding will show the "
|
317 |
-
"paragraphs
|
|
|
318 |
)
|
319 |
|
320 |
# Add a checkbox for showing annotations
|
@@ -340,9 +386,12 @@ with st.sidebar:
|
|
340 |
|
341 |
st.session_state['pdf_rendering'] = st.radio(
|
342 |
"PDF rendering mode",
|
343 |
-
|
344 |
index=0,
|
345 |
disabled=not uploaded_file,
|
|
|
|
|
|
|
346 |
)
|
347 |
|
348 |
st.divider()
|
@@ -358,10 +407,13 @@ with st.sidebar:
|
|
358 |
|
359 |
st.header("Query mode (Advanced use)")
|
360 |
st.markdown(
|
361 |
-
"""By default, the mode is set to LLM (Language Model) which enables question/answering.
|
|
|
362 |
|
363 |
st.markdown(
|
364 |
-
"""If you switch the mode to "Embedding," the system will return specific chunks from the document
|
|
|
|
|
365 |
|
366 |
if uploaded_file and not st.session_state.loaded_embeddings:
|
367 |
if model not in st.session_state['api_keys']:
|
@@ -426,10 +478,12 @@ with right_column:
|
|
426 |
if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
|
427 |
for message in st.session_state.messages:
|
428 |
with st.chat_message(message["role"]):
|
429 |
-
if message['mode'] == "
|
430 |
st.markdown(message["content"], unsafe_allow_html=True)
|
431 |
-
elif message['mode'] == "
|
432 |
st.write(message["content"])
|
|
|
|
|
433 |
if model not in st.session_state['rqa']:
|
434 |
st.error("The API Key for the " + model + " is missing. Please add it before sending any query. `")
|
435 |
st.stop()
|
@@ -439,30 +493,43 @@ with right_column:
|
|
439 |
st.session_state.messages.append({"role": "user", "mode": mode, "content": question})
|
440 |
|
441 |
text_response = None
|
442 |
-
if mode == "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
with st.spinner("Generating LLM response..."):
|
444 |
-
text_response = st.session_state['rqa'][model].
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
|
461 |
if not text_response:
|
462 |
st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")
|
463 |
|
464 |
with st.chat_message("assistant"):
|
465 |
-
if mode == "
|
466 |
if st.session_state['ner_processing']:
|
467 |
with st.spinner("Processing NER on LLM response..."):
|
468 |
entities = gqa.process_single_text(text_response)
|
@@ -486,6 +553,6 @@ with left_column:
|
|
486 |
height=800,
|
487 |
annotation_outline_size=1,
|
488 |
annotations=st.session_state['annotations'],
|
489 |
-
rendering=
|
490 |
render_text=True
|
491 |
)
|
|
|
5 |
|
6 |
import dotenv
|
7 |
from grobid_quantities.quantities import QuantitiesAPI
|
|
|
8 |
from langchain.memory import ConversationBufferWindowMemory
|
9 |
+
from langchain_community.chat_models.openai import ChatOpenAI
|
10 |
+
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
|
11 |
+
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
12 |
+
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
|
13 |
from streamlit_pdf_viewer import pdf_viewer
|
14 |
|
15 |
+
from document_qa.ner_client_generic import NERClientGeneric
|
16 |
+
|
17 |
dotenv.load_dotenv(override=True)
|
18 |
|
19 |
import streamlit as st
|
20 |
+
from document_qa.document_qa_engine import DocumentQAEngine, DataStorage
|
|
|
|
|
|
|
21 |
from document_qa.grobid_processors import GrobidAggregationProcessor, decorate_text_with_annotations
|
|
|
22 |
|
23 |
OPENAI_MODELS = ['gpt-3.5-turbo',
|
24 |
"gpt-4",
|
25 |
"gpt-4-1106-preview"]
|
26 |
|
27 |
+
OPENAI_EMBEDDINGS = [
|
28 |
+
'text-embedding-ada-002',
|
29 |
+
'text-embedding-3-large',
|
30 |
+
'openai-text-embedding-3-small'
|
31 |
+
]
|
32 |
+
|
33 |
OPEN_MODELS = {
|
34 |
+
'mistral-7b-instruct-v0.3': 'mistralai/Mistral-7B-Instruct-v0.2',
|
35 |
+
# 'Phi-3-mini-128k-instruct': "microsoft/Phi-3-mini-128k-instruct",
|
36 |
+
'Phi-3-mini-4k-instruct': "microsoft/Phi-3-mini-4k-instruct"
|
37 |
+
}
|
38 |
+
|
39 |
+
DEFAULT_OPEN_EMBEDDING_NAME = 'Default (all-MiniLM-L6-v2)'
|
40 |
+
OPEN_EMBEDDINGS = {
|
41 |
+
DEFAULT_OPEN_EMBEDDING_NAME: 'all-MiniLM-L6-v2',
|
42 |
+
'Salesforce/SFR-Embedding-Mistral': 'Salesforce/SFR-Embedding-Mistral'
|
43 |
}
|
44 |
|
45 |
DISABLE_MEMORY = ['zephyr-7b-beta']
|
|
|
96 |
if 'pdf_rendering' not in st.session_state:
|
97 |
st.session_state['pdf_rendering'] = None
|
98 |
|
99 |
+
if 'embeddings' not in st.session_state:
|
100 |
+
st.session_state['embeddings'] = None
|
101 |
+
|
102 |
st.set_page_config(
|
103 |
page_title="Scientific Document Insights Q/A",
|
104 |
page_icon="📝",
|
|
|
155 |
|
156 |
|
157 |
# @st.cache_resource
|
158 |
+
def init_qa(model, embeddings_name=None, api_key=None):
|
159 |
## For debug add: callbacks=[PromptLayerCallbackHandler(pl_tags=["langchain", "chatgpt", "document-qa"])])
|
160 |
if model in OPENAI_MODELS:
|
161 |
+
if embeddings_name is None:
|
162 |
+
embeddings_name = 'text-embedding-ada-002'
|
163 |
+
|
164 |
st.session_state['memory'] = ConversationBufferWindowMemory(k=4)
|
165 |
if api_key:
|
166 |
chat = ChatOpenAI(model_name=model,
|
167 |
temperature=0,
|
168 |
openai_api_key=api_key,
|
169 |
frequency_penalty=0.1)
|
170 |
+
if embeddings_name not in OPENAI_EMBEDDINGS:
|
171 |
+
st.error(f"The embeddings provided {embeddings_name} are not supported by this model {model}.")
|
172 |
+
st.stop()
|
173 |
+
return
|
174 |
+
embeddings = OpenAIEmbeddings(model=embeddings_name, openai_api_key=api_key)
|
175 |
|
176 |
else:
|
177 |
chat = ChatOpenAI(model_name=model,
|
178 |
temperature=0,
|
179 |
frequency_penalty=0.1)
|
180 |
+
embeddings = OpenAIEmbeddings(model=embeddings_name)
|
181 |
|
182 |
elif model in OPEN_MODELS:
|
183 |
+
if embeddings_name is None:
|
184 |
+
embeddings_name = DEFAULT_OPEN_EMBEDDING_NAME
|
185 |
+
|
186 |
+
chat = HuggingFaceEndpoint(
|
187 |
repo_id=OPEN_MODELS[model],
|
188 |
+
temperature=0.01,
|
189 |
+
max_new_tokens=2048,
|
190 |
+
model_kwargs={"max_length": 4096}
|
191 |
)
|
192 |
embeddings = HuggingFaceEmbeddings(
|
193 |
+
model_name=OPEN_EMBEDDINGS[embeddings_name])
|
194 |
st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
|
195 |
else:
|
196 |
st.error("The model was not loaded properly. Try reloading. ")
|
197 |
st.stop()
|
198 |
return
|
199 |
|
200 |
+
storage = DataStorage(embeddings)
|
201 |
+
return DocumentQAEngine(chat, storage, grobid_url=os.environ['GROBID_URL'], memory=st.session_state['memory'])
|
202 |
|
203 |
|
204 |
@st.cache_resource
|
205 |
def init_ner():
|
206 |
quantities_client = QuantitiesAPI(os.environ['GROBID_QUANTITIES_URL'], check_server=True)
|
207 |
|
208 |
+
materials_client = NERClientGeneric(ping=True)
|
209 |
config_materials = {
|
210 |
'grobid': {
|
211 |
"server": os.environ['GROBID_MATERIALS_URL'],
|
|
|
220 |
|
221 |
materials_client.set_config(config_materials)
|
222 |
|
223 |
+
gqa = GrobidAggregationProcessor(grobid_quantities_client=quantities_client,
|
224 |
+
grobid_superconductors_client=materials_client)
|
|
|
|
|
225 |
return gqa
|
226 |
|
227 |
|
|
|
257 |
"Model:",
|
258 |
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
|
259 |
index=(OPENAI_MODELS + list(OPEN_MODELS.keys())).index(
|
260 |
+
"mistral-7b-instruct-v0.2") if "DEFAULT_MODEL" not in os.environ or not os.environ["DEFAULT_MODEL"] else (
|
261 |
OPENAI_MODELS + list(OPEN_MODELS.keys())).index(os.environ["DEFAULT_MODEL"]),
|
262 |
placeholder="Select model",
|
263 |
help="Select the LLM model:",
|
264 |
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
|
265 |
)
|
266 |
+
embedding_choices = OPENAI_EMBEDDINGS if model in OPENAI_MODELS else OPEN_EMBEDDINGS
|
267 |
+
|
268 |
+
st.session_state['embeddings'] = embedding_name = st.selectbox(
|
269 |
+
"Embeddings:",
|
270 |
+
options=embedding_choices,
|
271 |
+
index=0,
|
272 |
+
placeholder="Select embedding",
|
273 |
+
help="Select the Embedding function:",
|
274 |
+
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
|
275 |
+
)
|
276 |
|
277 |
st.markdown(
|
278 |
+
":warning: [Usage disclaimer](https://github.com/lfoppiano/document-qa?tab=readme-ov-file#disclaimer-on-data-security-and-privacy-%EF%B8%8F) :warning: ")
|
279 |
|
280 |
if (model in OPEN_MODELS) and model not in st.session_state['api_keys']:
|
281 |
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
|
|
292 |
st.session_state['api_keys'][model] = api_key
|
293 |
# if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
294 |
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
|
295 |
+
st.session_state['rqa'][model] = init_qa(model, embedding_name)
|
296 |
|
297 |
elif model in OPENAI_MODELS and model not in st.session_state['api_keys']:
|
298 |
if 'OPENAI_API_KEY' not in os.environ:
|
|
|
306 |
with st.spinner("Preparing environment"):
|
307 |
st.session_state['api_keys'][model] = api_key
|
308 |
if 'OPENAI_API_KEY' not in os.environ:
|
309 |
+
st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'], api_key)
|
310 |
else:
|
311 |
+
st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'])
|
312 |
# else:
|
313 |
# is_api_key_provided = st.session_state['api_key']
|
314 |
|
|
|
343 |
disabled=not uploaded_file
|
344 |
)
|
345 |
|
346 |
+
query_modes = {
|
347 |
+
"llm": "LLM Q/A",
|
348 |
+
"embeddings": "Embeddings",
|
349 |
+
"question_coefficient": "Question coefficient"
|
350 |
+
}
|
351 |
+
|
352 |
with st.sidebar:
|
353 |
st.header("Settings")
|
354 |
mode = st.radio(
|
355 |
"Query mode",
|
356 |
+
("llm", "embeddings", "question_coefficient"),
|
357 |
disabled=not uploaded_file,
|
358 |
index=0,
|
359 |
horizontal=True,
|
360 |
+
format_func=lambda x: query_modes[x],
|
361 |
help="LLM will respond the question, Embedding will show the "
|
362 |
+
"relevant paragraphs to the question in the paper. "
|
363 |
+
"Question coefficient attempt to estimate how effective the question will be answered."
|
364 |
)
|
365 |
|
366 |
# Add a checkbox for showing annotations
|
|
|
386 |
|
387 |
st.session_state['pdf_rendering'] = st.radio(
|
388 |
"PDF rendering mode",
|
389 |
+
("unwrap", "legacy_embed"),
|
390 |
index=0,
|
391 |
disabled=not uploaded_file,
|
392 |
+
help="PDF rendering engine."
|
393 |
+
"Note: The Legacy PDF viewer does not support annotations and might not work on Chrome.",
|
394 |
+
format_func=lambda q: "Legacy PDF Viewer" if q == "legacy_embed" else "Streamlit PDF Viewer (Pdf.js)"
|
395 |
)
|
396 |
|
397 |
st.divider()
|
|
|
407 |
|
408 |
st.header("Query mode (Advanced use)")
|
409 |
st.markdown(
|
410 |
+
"""By default, the mode is set to LLM (Language Model) which enables question/answering.
|
411 |
+
You can directly ask questions related to the document content, and the system will answer the question using content from the document.""")
|
412 |
|
413 |
st.markdown(
|
414 |
+
"""If you switch the mode to "Embedding," the system will return specific chunks from the document
|
415 |
+
that are semantically related to your query. This mode helps to test why sometimes the answers are not
|
416 |
+
satisfying or incomplete. """)
|
417 |
|
418 |
if uploaded_file and not st.session_state.loaded_embeddings:
|
419 |
if model not in st.session_state['api_keys']:
|
|
|
478 |
if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
|
479 |
for message in st.session_state.messages:
|
480 |
with st.chat_message(message["role"]):
|
481 |
+
if message['mode'] == "llm":
|
482 |
st.markdown(message["content"], unsafe_allow_html=True)
|
483 |
+
elif message['mode'] == "embeddings":
|
484 |
st.write(message["content"])
|
485 |
+
if message['mode'] == "question_coefficient":
|
486 |
+
st.markdown(message["content"], unsafe_allow_html=True)
|
487 |
if model not in st.session_state['rqa']:
|
488 |
st.error("The API Key for the " + model + " is missing. Please add it before sending any query. `")
|
489 |
st.stop()
|
|
|
493 |
st.session_state.messages.append({"role": "user", "mode": mode, "content": question})
|
494 |
|
495 |
text_response = None
|
496 |
+
if mode == "embeddings":
|
497 |
+
with st.spinner("Fetching the relevant context..."):
|
498 |
+
text_response, coordinates = st.session_state['rqa'][model].query_storage(
|
499 |
+
question,
|
500 |
+
st.session_state.doc_id,
|
501 |
+
context_size=context_size
|
502 |
+
)
|
503 |
+
elif mode == "llm":
|
504 |
with st.spinner("Generating LLM response..."):
|
505 |
+
_, text_response, coordinates = st.session_state['rqa'][model].query_document(
|
506 |
+
question,
|
507 |
+
st.session_state.doc_id,
|
508 |
+
context_size=context_size
|
509 |
+
)
|
510 |
+
|
511 |
+
elif mode == "question_coefficient":
|
512 |
+
with st.spinner("Estimate question/context relevancy..."):
|
513 |
+
text_response, coordinates = st.session_state['rqa'][model].analyse_query(
|
514 |
+
question,
|
515 |
+
st.session_state.doc_id,
|
516 |
+
context_size=context_size
|
517 |
+
)
|
518 |
+
|
519 |
+
annotations = [[GrobidAggregationProcessor.box_to_dict([cs for cs in c.split(",")]) for c in coord_doc]
|
520 |
+
for coord_doc in coordinates]
|
521 |
+
gradients = generate_color_gradient(len(annotations))
|
522 |
+
for i, color in enumerate(gradients):
|
523 |
+
for annotation in annotations[i]:
|
524 |
+
annotation['color'] = color
|
525 |
+
st.session_state['annotations'] = [annotation for annotation_doc in annotations for annotation in
|
526 |
+
annotation_doc]
|
527 |
|
528 |
if not text_response:
|
529 |
st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")
|
530 |
|
531 |
with st.chat_message("assistant"):
|
532 |
+
if mode == "llm":
|
533 |
if st.session_state['ner_processing']:
|
534 |
with st.spinner("Processing NER on LLM response..."):
|
535 |
entities = gqa.process_single_text(text_response)
|
|
|
553 |
height=800,
|
554 |
annotation_outline_size=1,
|
555 |
annotations=st.session_state['annotations'],
|
556 |
+
rendering=st.session_state['pdf_rendering']
|
557 |
render_text=True
|
558 |
)
|