Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,634 Bytes
833ef3a 456ed62 833ef3a 456ed62 833ef3a 456ed62 8d65abf 833ef3a 456ed62 8d65abf 833ef3a c2d0882 8d65abf 833ef3a c2d0882 b725215 5ef4699 456ed62 8d65abf 833ef3a c2d0882 8d65abf c2d0882 833ef3a 456ed62 8d65abf 833ef3a 8d65abf c2d0882 8d65abf 833ef3a 8d65abf 833ef3a c2d0882 8d65abf c2d0882 833ef3a e683bf1 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a c2d0882 833ef3a c2d0882 8d65abf c2d0882 8d65abf e683bf1 8d65abf e683bf1 8d65abf e683bf1 8d65abf c2d0882 833ef3a c2d0882 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a d0f30fa 833ef3a 8d65abf 833ef3a 8d65abf 833ef3a 0fb7ee6 833ef3a 4c9245b 8d65abf e683bf1 8d65abf e683bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
# 메모리 관리를 위한 gc 추가
import gc
gc.collect()
torch.cuda.empty_cache()
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
# Device setup with minimal memory usage
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
dtype = torch.float16 # Use float16 for minimum memory
# Set CUDA memory fraction to 50%
torch.cuda.set_per_process_memory_fraction(0.5)
else:
power_device = "CPU"
device = "cpu"
dtype = torch.float32
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
# Minimal model configuration
model_config = {
"low_cpu_mem_usage": True,
"torch_dtype": dtype,
"use_safetensors": True,
"variant": "fp16", # Use fp16 variant if available
}
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes", "*.bin"], # Ignore unnecessary files
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load models with minimal configuration
try:
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
**model_config
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
model_path,
controlnet=controlnet,
**model_config
)
# Enable all memory optimizations
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
pipe.enable_vae_slicing()
# Clear memory after loading
gc.collect()
torch.cuda.empty_cache()
except Exception as e:
print(f"Error loading models: {e}")
raise
# Extremely reduced parameters
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 128 * 128 # Extremely reduced from 256 * 256
def check_resources():
if torch.cuda.is_available():
memory_allocated = torch.cuda.memory_allocated(0)
memory_reserved = torch.cuda.memory_reserved(0)
if memory_allocated/memory_reserved > 0.7: # 70% threshold
gc.collect()
torch.cuda.empty_cache()
return True
def process_input(input_image, upscale_factor, **kwargs):
input_image = input_image.convert('RGB')
# Reduce image size more aggressively
w, h = input_image.size
max_size = int(np.sqrt(MAX_PIXEL_BUDGET))
if w > max_size or h > max_size:
if w > h:
new_w = max_size
new_h = int(h * max_size / w)
else:
new_h = max_size
new_w = int(w * max_size / h)
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), w, h, True
@spaces.GPU
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
progress=gr.Progress(track_tqdm=True),
):
try:
gc.collect()
torch.cuda.empty_cache()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
input_image, w, h, _ = process_input(input_image, upscale_factor)
with torch.inference_mode():
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt="",
control_image=input_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=2.0, # Reduced from 3.5
height=h,
width=w,
generator=generator,
).images[0]
gc.collect()
torch.cuda.empty_cache()
return [input_image, image, seed]
except Exception as e:
gr.Error(f"An error occurred: {str(e)}")
return None
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
with gr.Column(scale=4):
input_im = gr.Image(label="Input Image", type="pil")
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=20, # Reduced from 30
step=1,
value=10, # Reduced from 20
)
upscale_factor = gr.Slider(
label="Scale",
minimum=1,
maximum=1, # Fixed at 1
step=1,
value=1,
)
controlnet_conditioning_scale = gr.Slider(
label="Control Scale",
minimum=0.1,
maximum=0.5, # Reduced from 1.0
step=0.1,
value=0.3, # Reduced from 0.5
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Random Seed", value=True)
with gr.Row():
result = ImageSlider(label="Result", type="pil", interactive=True)
current_dir = os.path.dirname(os.path.abspath(__file__))
examples = gr.Examples(
examples=[
[42, False, os.path.join(current_dir, "z1.webp"), 10, 1, 0.3],
[42, False, os.path.join(current_dir, "z2.webp"), 10, 1, 0.3],
],
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
fn=infer,
outputs=result,
cache_examples=False, # Disable caching
)
gr.on(
[run_button.click],
fn=infer,
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
outputs=result,
show_api=False,
)
# Launch with minimal resources
demo.queue(max_size=1).launch(
share=False,
debug=True,
show_error=True,
max_threads=1,
enable_queue=True,
cache_examples=False,
quiet=True,
) |