File size: 6,634 Bytes
833ef3a
 
 
 
456ed62
833ef3a
456ed62
833ef3a
 
 
 
 
 
456ed62
8d65abf
 
 
 
 
833ef3a
 
 
 
 
 
456ed62
8d65abf
833ef3a
 
c2d0882
8d65abf
 
 
833ef3a
 
 
c2d0882
b725215
5ef4699
456ed62
8d65abf
 
 
 
 
 
 
 
833ef3a
c2d0882
 
8d65abf
c2d0882
 
833ef3a
456ed62
8d65abf
 
 
 
 
 
 
 
 
 
 
 
833ef3a
8d65abf
 
 
 
 
 
 
 
 
 
 
 
 
c2d0882
8d65abf
833ef3a
8d65abf
833ef3a
c2d0882
 
 
8d65abf
 
 
 
c2d0882
833ef3a
 
e683bf1
 
8d65abf
833ef3a
8d65abf
 
 
 
 
 
 
 
 
 
833ef3a
 
 
8d65abf
 
833ef3a
c2d0882
833ef3a
 
 
 
 
 
 
 
 
c2d0882
8d65abf
 
 
c2d0882
 
 
8d65abf
 
 
 
e683bf1
 
8d65abf
e683bf1
 
8d65abf
 
 
e683bf1
 
8d65abf
 
 
 
 
c2d0882
 
 
 
833ef3a
c2d0882
833ef3a
 
 
 
 
 
 
 
8d65abf
 
 
833ef3a
8d65abf
833ef3a
 
8d65abf
833ef3a
8d65abf
833ef3a
8d65abf
833ef3a
 
8d65abf
833ef3a
8d65abf
833ef3a
8d65abf
833ef3a
 
 
 
 
 
 
 
8d65abf
833ef3a
 
8d65abf
833ef3a
d0f30fa
 
833ef3a
 
8d65abf
 
833ef3a
 
 
 
 
 
 
 
 
 
 
8d65abf
833ef3a
0fb7ee6
833ef3a
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9245b
8d65abf
e683bf1
 
 
 
 
8d65abf
 
 
e683bf1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download

# 메모리 관리를 위한 gc 추가
import gc
gc.collect()
torch.cuda.empty_cache()

css = """
#col-container {
    margin: 0 auto;
    max-width: 512px;
}
"""

# Device setup with minimal memory usage
if torch.cuda.is_available():
    power_device = "GPU"
    device = "cuda" 
    dtype = torch.float16  # Use float16 for minimum memory
    # Set CUDA memory fraction to 50%
    torch.cuda.set_per_process_memory_fraction(0.5)
else:
    power_device = "CPU"
    device = "cpu"
    dtype = torch.float32

huggingface_token = os.getenv("HUGGINFACE_TOKEN")

# Minimal model configuration
model_config = {
    "low_cpu_mem_usage": True,
    "torch_dtype": dtype,
    "use_safetensors": True,
    "variant": "fp16",  # Use fp16 variant if available
}

model_path = snapshot_download(
    repo_id="black-forest-labs/FLUX.1-dev",
    repo_type="model",
    ignore_patterns=["*.md", "*..gitattributes", "*.bin"],  # Ignore unnecessary files
    local_dir="FLUX.1-dev", 
    token=huggingface_token,
)

# Load models with minimal configuration
try:
    controlnet = FluxControlNetModel.from_pretrained(
        "jasperai/Flux.1-dev-Controlnet-Upscaler",
        **model_config
    ).to(device)

    pipe = FluxControlNetPipeline.from_pretrained(
        model_path,
        controlnet=controlnet,
        **model_config
    )

    # Enable all memory optimizations
    pipe.enable_model_cpu_offload()
    pipe.enable_attention_slicing(1)
    pipe.enable_sequential_cpu_offload()
    pipe.enable_vae_slicing()
    
    # Clear memory after loading
    gc.collect()
    torch.cuda.empty_cache()
    
except Exception as e:
    print(f"Error loading models: {e}")
    raise

# Extremely reduced parameters
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 128 * 128  # Extremely reduced from 256 * 256

def check_resources():
    if torch.cuda.is_available():
        memory_allocated = torch.cuda.memory_allocated(0)
        memory_reserved = torch.cuda.memory_reserved(0)
        if memory_allocated/memory_reserved > 0.7:  # 70% threshold
            gc.collect()
            torch.cuda.empty_cache()
    return True

def process_input(input_image, upscale_factor, **kwargs):
    input_image = input_image.convert('RGB')
    
    # Reduce image size more aggressively
    w, h = input_image.size
    max_size = int(np.sqrt(MAX_PIXEL_BUDGET))
    if w > max_size or h > max_size:
        if w > h:
            new_w = max_size
            new_h = int(h * max_size / w)
        else:
            new_h = max_size
            new_w = int(w * max_size / h)
        input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
    
    w, h = input_image.size
    w = w - w % 8
    h = h - h % 8
    
    return input_image.resize((w, h)), w, h, True

@spaces.GPU
def infer(
    seed,
    randomize_seed,
    input_image,
    num_inference_steps,
    upscale_factor,
    controlnet_conditioning_scale,
    progress=gr.Progress(track_tqdm=True),
):
    try:
        gc.collect()
        torch.cuda.empty_cache()
        
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
            
        input_image, w, h, _ = process_input(input_image, upscale_factor)
        
        with torch.inference_mode():
            generator = torch.Generator().manual_seed(seed)
            image = pipe(
                prompt="",
                control_image=input_image,
                controlnet_conditioning_scale=controlnet_conditioning_scale,
                num_inference_steps=num_inference_steps,
                guidance_scale=2.0,  # Reduced from 3.5
                height=h,
                width=w,
                generator=generator,
            ).images[0]
            
        gc.collect()
        torch.cuda.empty_cache()
        
        return [input_image, image, seed]

    except Exception as e:
        gr.Error(f"An error occurred: {str(e)}")
        return None

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    with gr.Row():
        run_button = gr.Button(value="Run")

    with gr.Row():
        with gr.Column(scale=4):
            input_im = gr.Image(label="Input Image", type="pil")
        with gr.Column(scale=1):
            num_inference_steps = gr.Slider(
                label="Steps",
                minimum=1,
                maximum=20,  # Reduced from 30
                step=1,
                value=10,    # Reduced from 20
            )
            upscale_factor = gr.Slider(
                label="Scale",
                minimum=1,
                maximum=1,   # Fixed at 1
                step=1,
                value=1,
            )
            controlnet_conditioning_scale = gr.Slider(
                label="Control Scale",
                minimum=0.1,
                maximum=0.5,  # Reduced from 1.0
                step=0.1,
                value=0.3,   # Reduced from 0.5
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Random Seed", value=True)

    with gr.Row():
        result = ImageSlider(label="Result", type="pil", interactive=True)

    current_dir = os.path.dirname(os.path.abspath(__file__))
    
    examples = gr.Examples(
        examples=[
            [42, False, os.path.join(current_dir, "z1.webp"), 10, 1, 0.3],
            [42, False, os.path.join(current_dir, "z2.webp"), 10, 1, 0.3],
        ],
        inputs=[
            seed,
            randomize_seed,
            input_im,
            num_inference_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        fn=infer,
        outputs=result,
        cache_examples=False,  # Disable caching
    )

    gr.on(
        [run_button.click],
        fn=infer,
        inputs=[
            seed,
            randomize_seed,
            input_im,
            num_inference_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        outputs=result,
        show_api=False,
    )

# Launch with minimal resources
demo.queue(max_size=1).launch(
    share=False,
    debug=True,
    show_error=True,
    max_threads=1,
    enable_queue=True,
    cache_examples=False,
    quiet=True,
)