Spaces:
Sleeping
Sleeping
""" | |
This is a utility script for use in sagemaker | |
""" | |
import json | |
import pandas as pd | |
import pyarrow as pa | |
import pyarrow.parquet as pq | |
import os | |
from tqdm import tqdm | |
# File paths | |
json_file_path = "/home/studio-lab-user/arxiv-paper-recommender-system/arxiv-metadata-oai-snapshot.json" | |
parquet_file_path = "/home/studio-lab-user/arxiv-paper-recommender-system/data/processed/arxiv_papers_raw.parquet.gzip" | |
# Batch size | |
batch_size = 10000 | |
# Create the parent directory if it doesn't exist | |
parent_dir = os.path.dirname(parquet_file_path) | |
os.makedirs(parent_dir, exist_ok=True) | |
# Open the JSON file | |
with open(json_file_path, 'r') as file: | |
# Initialize an empty list to store the data | |
arxiv_data = [] | |
processed_count = 0 | |
# Iterate over each line in the file | |
for line in tqdm(file): | |
# Load the JSON data from each line and append it to the arxiv_data list | |
arxiv_data.append(json.loads(line)) | |
processed_count += 1 | |
# Process a batch of data | |
if processed_count % batch_size == 0: | |
df = pd.DataFrame.from_records(arxiv_data) | |
# Convert the batch to parquet and append it to the file | |
# df.to_parquet(parquet_file_path, compression='gzip', engine='pyarrow', index=False, append=True) | |
# Create a parquet table from your dataframe | |
table = pa.Table.from_pandas(df) | |
# Write direct to your parquet file | |
pq.write_to_dataset(table , root_path=parquet_file_path) | |
arxiv_data = [] | |
# Process the remaining data (if any) | |
if arxiv_data: | |
df = pd.DataFrame.from_records(arxiv_data) | |
# Convert the remaining batch to parquet and append it to the file | |
# df.to_parquet(parquet_file_path, compression='gzip', engine='pyarrow', index=False, append=True) | |
pq.write_to_dataset(parquet_file_path , root_path=parquet_file_path) | |